
Project Number 780251

D6.5 Hybrid Polystore Continuous Evolution Tools

Version 1.0
8 July 2020

Final

Public Distribution

University of Namur

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L′Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the TYPHON Project Partners.

D6.5 Hybrid Polystore Continuous Evolution Tools

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
OTE SWAT.Engineering
Theodoros E. Mavroeidakos Davy Landman
99 Kifissias Avenue Science Park 123
151 24 Athens 1098 XG Amsterdam
Greece Netherlands
Tel: +30 697 814 7618 Tel: +31 633754110
E-mail: tmavroeid@ote.gr E-mail: davy.landman@swat.engineering
The Open Group University of L′Aquila
Scott Hansen Davide Di Ruscio
Rond Point Schuman 6, 5th Floor Piazza Vincenzo Rivera 1
1040 Brussels 67100 L’Aquila
Belgium Italy
Tel: +32 2 675 1136 Tel: +39 0862 433735
E-mail: s.hansen@opengroup.org E-mail: davide.diruscio@univaq.it
University of Namur University of York
Anthony Cleve Dimitris Kolovos
Rue de Bruxelles 61 Deramore Lane
5000 Namur York YO10 5GH
Belgium United Kingdom
Tel: +32 8 172 4963 Tel: +44 1904 325167
E-mail: anthony.cleve@unamur.be E-mail: dimitris.kolovos@york.ac.uk
Volkswagen
Behrang Monajemi
Berliner Ring 2
38440 Wolfsburg
Germany
Tel: +49 5361 9-994313
E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Document Control
Version Status Date

0.1 Document outline 19 March 2020
0.4 First draft for internal review 17 June 2020
0.9 Full draft for partner review 3 July 2020
1.0 Updates from QA Review 8 July 2020

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page iii

D6.5 Hybrid Polystore Continuous Evolution Tools

Table of Contents

1 Introduction 1

1.1 Purpose of the deliverable . 1

1.2 Relationship to other Typhon deliverables . 1

1.3 Contributors . 2

1.4 Structure of the deliverable . 2

2 Continuous evolution tool 3

2.1 Step 1: Capturing TyphonQL queries . 4

2.2 Step 2: Parsing and classifying TyphonQL queries . 4

2.3 Step 3: Visual analytics of polystore data usage . 7

2.4 Step 4: Recommending polystore schema reconfigurations 17

2.5 Step 5: Applying the selected recommendations . 18

3 Data Ingestion Tool 21

3.1 Step 1: Extraction . 21

3.2 Step 2: Deployment . 25

3.3 Step 3: Ingestion . 25

4 Summary of WP6 contributions 26

5 Conclusions 30

List of Figures

1 General architecture of the continuous evolution tool . 3

2 TyphonML model of the polystore used as illustrative example 5

3 Structure of the analytics database (MongoDB) . 6

4 Main view of the continuous evolution tool . 8

5 Global schema view of the polystore . 8

6 Schema view of the relational database . 9

7 Schema view of the document database . 9

8 Entity size view . 10

9 Size of the (selected) polystore entities over time, expressed in number of records 11

10 Distribution of CRUD operations applied to the polystore . 11

11 Distribution of queries among the polystore entities . 12

Page iv Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

12 Distribution of CRUD operations and entity accesses during a particular period of time 13

13 Distribution of CRUD operations over time, expressed in number of queries 14

14 Number of queries accessing the (selected) polystore entities over time 14

15 General overview of the most frequent query types (left), and of the slowest queries (right) . . 15

16 Duration of a particular query type over time . 15

17 Evolution of the size of entity Address over time . 16

18 Evolution of the size of entity User over time . 17

19 Schema evolution recommendations related to a particular (slow) query 18

20 Selection of the schema evolution recommendations to apply to the polystore 18

21 Schema evolution operators corresponding to the recommendations selected at Figure 20 . . . 19

22 TyphonML model obtained after applying the selected recommendations 20

23 Overview of the process followed by the data ingestion tool 21

24 Example schema of an input relational database . 22

25 Conceptual abstraction of input schema of Figure 24 . 22

26 TyphonML model extracted from the input relational schema of Figure 24 23

27 Example of configuration for the extraction step . 24

28 Data ingestion parameters . 25

List of Tables

1 Coverage of technical requirements related to Work Package 6 27

2 Coverage of use case requirements related to Work Package 6 28

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page v

D6.5 Hybrid Polystore Continuous Evolution Tools

Executive Summary

In the context of its Work Package 6, the Typhon project aims to develop a method and a technical infrastructure
to support the graceful evolution of hybrid polystores, where multiple NoSQL and SQL databases may jointly
evolve in a consistent manner.

The proposed methodology should cover four main aspects: (1) Polystore schema evolution: Allowing the
TyphonML polystore schema to evolve over time in response to changes in terms of data requirements; (2)
Polystore data migration: Allowing data to be migrated from one version of a polystore schema to another
version of a polystore schema; (3) Polystore query migration: Allowing to automatically support the adaptation
of existing TyphonQL queries to an evolving polystore schema; (4) Continuous polystore evolution: exploiting
the polystore query events captured by the monitoring mechanisms developed in WP5 in order to recommend
possible polystore schema reconfigurations (be they intra-paradigm or inter-paradigm).

This deliverable focusses on the fourth aspect of our evolution methodology, namely the monitoring of poly-
store query events in order to provide users with polystore evolution recommendations, when relevant.

It also presents an additional WP6 tool, allowing one to ingest data from pre-existing relational databases to a
new Typhon polystore.

Page vi Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

1 Introduction

According to Work Package 6, the Typhon project aims at developing a methodology and technical infras-
tructure of hybrid polystore Data Migration tools in order to ensure an automated support of cross-database
and cross-paradigm data migration. It takes into account the evolution of hybrid polystores, where multiple,
NoSQL and SQL databases may co-evolve in a consistent manner.

In order to reach this goal, the Typhon polystore evolution tools aim to cover four main aspects:

• Polystore schema evolution: Allowing the TyphonML polystore schema to evolve over time in response
to changes in terms of data requirements.

• Polystore data migration: Allowing data to be migrated from one version of a polystore schema to
another.

• Polystore query migration: Allowing the adaptation of existing TyphonQL queries to an evolving poly-
store schema.

• Continuous polystore evolution: Exploiting the polystore query events captured by the monitoring
mechanisms developed in WP5 in order to recommend possible polystore schema reconfigurations (be
they intra-paradigm or inter-paradigm).

In the present deliverable, we mainly focus on the continuous polystore evolution aspect of our evolution
methodology, the goal of which is to propose a tool supporting the continuous evolution of the hybrid poly-
store. This tool aims at monitoring and analyzing polystore data usage, with a particular focus on data access
performance, in order to recommend polystore schema reconfigurations when relevant.

We also present an additional WP6 tool, that we developed on request of our use case partners. This tool
supports the ingestion of data from pre-existing relational databases into a new polystore.

1.1 Purpose of the deliverable

This document mainly presents the work that has been done with respect to task 6.5 of Work Package 6,
described as follows in the Typhon Description of Work:

Task 6.5: This task concerns the development of continuous evolution tools for the hybrid polystore. Those tools
will exploit the polystore query events captured by the monitoring mechanisms developed in Work Package 5.
Sophisticated algorithms will recommend possible polystore schema reconfigurations and will inform the user
on the impact of recommended polystore reconfigurations.

In addition, we also present an additional tool, developed upon request of our use-case partners, which supports
the ingestion of pre-existing data from relational databases into the polystore.

1.2 Relationship to other Typhon deliverables

The present deliverable is directly linked to several previous Typhon deliverables:

• The polystore continuous evolutions tools exploit the monitoring mechanisms and tools developed in
Work Package 5, and presented in deliverables D5.2 [8] and D5.3 [9].

• The polystore queries subject captured and analyzed by the continuous evolution tools are expressed
in the TyphonQL language developed in Work Package 4, and presented in deliverables D4.2 [1] and
D4.3 [2].

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 1

D6.5 Hybrid Polystore Continuous Evolution Tools

• The polystore reconfigurations recommended by the continuous evolution tools are expressed as a chain
of Schema Modification Operators (SMOs). Those operators are fully specified in deliverable D6.2 [5],
and are integrated in the TyphonML modeling language, presented in deliverables D2.3 [3] and D2.4 [4].

1.3 Contributors

The main contributor of this deliverable is University of Namur. All project partners contributed to this deliv-
erable, by providing us with input and feedback on earlier versions of the tools presented in this deliverable.
A demonstration of the data ingestion tool was presented during the Typhon project meeting in Athens (27-
28 February 2020). A demonstration of the continuous evolution tools was presented during a virtual Typhon
project meeting (18-19 June 2020).

1.4 Structure of the deliverable

The remainder of this Deliverable is structured as follows:

• Section 2 presents the continuous evolution tool, allowing users to monitor the data access performance
of a Typhon polystore and to recommend them possible polystore reconfigurations, when relevant.

• Section 3 presents the data ingestion tool, supporting the ingestion of data from pre-existing relational
databases into a new Typhon polystore.

• Section 4 summarizes the contributions of Work Package 6 and assesses the coverage of the underlying
technical and use case requirements.

• Section 5 provides concluding remarks and anticipates future work in Work Package 6.

Page 2 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Query
information

Post-event
publishing

TyphonQL
engine

Java
application

Post-event
consumption

Rascal
plugin

Query

Analytics
Database
(MongoDB)

Typhon API

General polystore
information

Writing

Web application

Angular
frontend

Node.js
backenduser

Interaction Reading

Figure 1: General architecture of the continuous evolution tool

2 Continuous evolution tool

The continuous evolution tool aims to monitor data usage performance in a Typhon polystore in order to
provide users with schema evolution recommendations, when relevant.

The tool communicates with several polystore components, including the post-execution events queue (WP5)
and, through the polystore API, the polystore TyphonML schema (WP2) and the polystore databases (WP3 and
WP4). This allows the continuous evolution to automatically retrieve useful information about the polystore,
including:

• the polystore configuration, i.e., the TyphonML entities and their mapping to underlying native
databases;

• the TyphonQL queries that are executed by the TyphonQL engine, and their duration;
• the (evolving) size of the TyphonML entities over time.

General overview The general architecture of the continuous evolution tool is depicted in Figure 1. Each
time a post-execution event is published to the post-event queue, a Java application wakes up and retrieves
the event. If the event corresponds to a DML query execution, the Java application sends the corresponding
TyphonQL query to a Rascal plugin. The latter parses, analyses and classifies the query and sends back the
corresponding query information to the Java application. This information is stored in an internal MongoDB
database, that is used as input by an interactive web application. The web application, relying on an Angular
frontend and a Node.js backend, provides users with visual analytics of the polystore data usage, as well as
with performance-based schema reconfiguration recommendations. Each of these steps is described in further
details in the remaining of this section.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 3

D6.5 Hybrid Polystore Continuous Evolution Tools

Running example In order to illustrate the use of the continuous evolution tool, we will use as running
example a polystore structured according to the TyphonML schema given in Figure 2. This schema includes 7
conceptual entities and 2 databases. Based on this example schema, we automatically generated post-execution
events corresponding to 1007 TyphonQL queries each query having a fictitious execution time. This random
generation reached a more or less equal distribution in terms of CRUD operations and polystore entities (259
insert, 244 select, 243 delete, and 261 update). We also considered a fictitious history of the polystore entities,
especially, as far as their size is concerned.

2.1 Step 1: Capturing TyphonQL queries

The continuous evolution tool exploits the polystore monitoring mechanisms developed in Work Package 5.
Thanks to those mechanisms, the tool can capture at runtime the successive TyphonQL queries that are sent to
the polystore, and executed by the TyphonQL engine. To do so, the tool consumes and analyses the so-called
post-execution events (PostEvent), generated and pushed by the TyphonQL engine to the analytics queue of
the WP5 monitoring infrastructure. We refer to deliverable D5.3 [9] for more details about this infrastructure.

2.2 Step 2: Parsing and classifying TyphonQL queries

The post-execution events captured at Step 1 include the TyphonQL queries that have been executed by the
TyphonQL engine. The continuous evolution tool parses each of those queries, in order to extract relevant
information to be used during the analytics and recommendation phases. Our tool focuses on post-execution
events corresponding to DML queries, i.e., select, insert, delete, and update queries. It ignores other events
such as, for instance, the execution of DDL queries (e.g., create entity, delete entity, etc.) sent by the schema
evolution tool to the TyphonQL engine.

The tool parses each captured TyphonQL query in order to extract relevant information, including:

• the type of query (select, insert, delete, update);
• the accessed TyphonML entities;
• the join conditions, if any;
• the query execution time, expressed in ms.

The query parsing and extraction step is implemented using Rascal, based on TyphonQL syntax.

Once the query is parsed and analyzed, the tool also classifies it. This classification aims to group together all
TyphonQL queries of the same form. A group of TyphonQL queries is called a query category. The queries
belonging to the same query category are queries that would become the same query after replacing all input
values with placeholders.

For instance, the following three TyphonQL queries can be classified into the same query category:

from Address a s e l e c t a where a . c o u n t r y == " Belgium "
from Address a s e l e c t a where a . c o u n t r y == " I t a l y "
from Address a s e l e c t a where a . c o u n t r y == " Germany "

Indeed, those queries only differ in terms of their input values. When replacing the only input value corre-
sponding to the address country ("Belgium", "Italy" and "Germany", respectively) with a placeholder ("?"), we
obtain the following query category:

from Address a s e l e c t a where a . c o u n t r y == " ? "

Page 4 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

entity Review{

id : string[32]

content : string[32]

product -> Product[1]

}

entity Product{

id : string[32]

name : string[32]

description : string[32]

reviews :-> Review."Review.product"[0..*]

}

entity OrderProduct{

id : string[32]

product_date : string[32]

totalAmount : int

paidWith -> CreditCard[1]

}

entity User{

id : string[32]

name : string[32]

comments :-> Comment[0..*]

paymentsDetails :-> CreditCard[0..*]

orders -> OrderProduct[0..*]

address -> Address."Address.user"[1]

}

entity Address{

streetName: string[32]

streetNumber: string[32]

zip: string[32]

city: string[32]

country: string[32]

user -> User[1]

}

entity Comment{

id : string[32]

content : string[32]

responses :-> Comment[0..*]

}

entity CreditCard{

id : string[32]

number : string[32]

expiryDate : string[32]

}

relationaldb RelationalDatabase{

tables{

table {

UserDB : User

idSpec (’User.name’)

}

table {

AddressDB: Address

}

table {

ProductDB : Product

index productIndex{

attributes (’Product.name’)

}

idSpec (’Product.name’)

}

table {

CreditCardDB : CreditCard

index creditCardIndex{

attributes ("CreditCard.number")

}

idSpec ("CreditCard.number")

}

table {

OrderDB : OrderProduct

index orderIndex {

attributes ("OrderProduct.id")

}

idSpec ("OrderProduct.id")

}

}

}

documentdb DocumentDatabase{

collections{

CommentsDB : Comment

ReviewDB : Review

}

}

Figure 2: TyphonML model of the polystore used as illustrative example

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 5

D6.5 Hybrid Polystore Continuous Evolution Tools

1-10-N R

1-1

0-N
R

1-1 0-NR1-1

0-N

R

TyphonModel
version
date
id: version

TyphonEntityHistory
updateDate
modelVersion
dataSize
nbOfQueries
nbOfSelect
nbOfInsert
nbOfUpdate
nbOfDelete
id: R.TyphonEntity

updateDate
acc: updateDate

TyphonEntity
name
dbName
dbType
latestVersion
versions[0-N]
id: name

QLQuery
query
type
allEntities[0-N]
mainEntities[0-N]
executionDate
executionTime
modelVersion
joins[0-N]

entity1
rel1[0-1]
entity2
rel2[0-1]

selectors[0-N]
entity
attribute
operator

acc: executionDate

QLNormalizedQuery
normalizedForm
count
id: normalizedForm

Figure 3: Structure of the analytics database (MongoDB)

In addition to parsing, analyzing and classifying the queries executed by the TyphonQL engine, the continu-
ous evolution tool also extracts - at regular time intervals1 - information about the Typhon polystore, with a
particular focus on TyphonML entities. This includes, in particular, the size of each TyphonML entity, ex-
pressed in terms of number of records, e.g., number of rows for a relational table or number of documents for
a MongoDB collection.

The extracted information is stored in an internal MongoDB database, that we will call the analytics database
in the remaining of this document. The structure of this database is shown at Figure 3. The QLQuery collection
is at the core of the analytics database. It corresponds to the information stored for each TyphonQL DML query.
Its attributes are the following:

• query: the TyphonQL query string, as sent to the TyphonQL engine and captured by the monitoring
mechanism of WP5.

• type: the type of query (select, insert, delete, update).
• allEntities: the list of all TyphonML entities involved in the query
• mainEntities: the list of the main TyphonML entities involved in the query. For instance, in the case of

a select query, the main entities are those occurring in the from clause.
• executionDate: the date of execution of the query.
• executionTime: the execution time (i.e., duration) of the query.
• modelVersion: the TyphonML schema version at the time of executing the query.

1the time interval being configurable.

Page 6 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

• joins: the list of conceptual join conditions occurring in the query, e.g., a.products == p.
• selectors: the list of attribute-based selection criteria, e.g., product.name == ’myproduct’.

The QLNormalizedQuery collection corresponds to the query categories. For each query category, the analytics
database stores:

• the normalized query, i.e., the query where all input values (constants) have been replaced with place-
holders, and the unnecessary whitespaces have been removed;

• the number of queries of this category that have been executed in the considered period.

In our running example, we started from 1007 generated query events (QLQuery instances), corresponding to
314 different query categories (QLNormalizedQuery isntances).

The TyphonModel collection relates to the successive versions of the TyphonML schema during the considered
period. The TyphonEntity and TyphonEntityHistory collections include information related to the polystore
entities, their size, their data manipulation usage and their evolution history.

The analytics database populated during Step 2 constitutes the main input of the next three steps, which re-
spectively aim at:

• providing users with interactive visual analytics of the polystore data usage (Step 3);
• providing users with polystore reconfiguration recommendations for those query categories suffering

from poor performance (Step 4);
• applying the reconfiguration recommendations selected by the user (Step 5).

These three next steps are presented and illustrated below.

2.3 Step 3: Visual analytics of polystore data usage

The main page of the visual analytics tool is depicted in Figure 4. This page provides the user with a general
overview (1) of the polystore configuration and (2) of the polystore data usage at a coarse-grained level.

Polystore schema view

On the right-hand side of the main page, as depicted in Figure 5, the user can see the current schema config-
uration of the polystore. In our example, one can see that the polystore currently consists of two databases: a
relational database including 5 entities (tables), and a document database consisting of 2 entities (collections).
The size of a circle relates to the number of records (rows, documents) in the corresponding database/entity.

By clicking on the relational database, the user can zoom and get more details about the entities it includes, as
shown in Figure 6. Here, we see that the database includes two large entities (in this case, tables): User and
Address; as well as three smaller tables: CreditCard, Product and OrderProduct.

By clicking on the document database, the user can see (Figure 7), that it includes two collections of a similar
size: Comment and Review.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 7

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 4: Main view of the continuous evolution tool

Figure 5: Global schema view of the polystore

Page 8 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 6: Schema view of the relational database

Figure 7: Schema view of the document database

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 9

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 8: Entity size view

Polystore entities view

The tool provides the user with a global overview of the current size of the polystore entities, as shown in
Figure 8. One can see that entities User and Address are the two largest entities of the polystore, in terms
of number of records. Positioning the mouse pointer on a given entity would provide the user with the exact
number of records for this entity.

The evolution of the entity size over time is also provided. The user can select the entities of interest, and the
tool then shows the evolution of the size of the selected entities over time. For instance, at Figure 9 reveals that
the size of entity User has rapidly increased. It has indeed recently jumped from 1.000 to 10.000 records.

Another visual metric concerns the volume and distribution CRUD operations that have been applied to the
polystore during the considered period. For instance, Figure 10 shows a pie chart reflecting the distribution of
CRUD operations executed (select, insert, delete, update). One can see that the CRUD operations are more or
less equally distributed, as it can be expected from our random query event generation. Note that positioning
the mouse pointer on a given CRUD operation allows to see the exact number of query occurrences of this
type.

Polystore CRUD operations view

A similar metric is provided for the distribution CRUD operations by TyphonML entity. For instance, Fig-
ure 11 shows that CRUD operations are more or less equally distributed among the 7 polytore entities. Again,
positioning the mouse pointer on a given entity allows to see the exact number of queries involving this entity.

The distribution of executed queries (by CRUD operation or by entity) can also be shown for a particular period
of time, chosen by the user, as depicted in Figure 12.

Page 10 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 9: Size of the (selected) polystore entities over time, expressed in number of records

Figure 10: Distribution of CRUD operations applied to the polystore

The user can also look at the evolution of the number of CRUD operations executed over time, at the level of
the entire polystore. Figure 13 shows an example of such an evolution, where we can see a peak at 120 select
queries at a certain point.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 11

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 11: Distribution of queries among the polystore entities

A similar visual analytics is proposed at the level of polystore entities. One can see, for each entity, the
evolution of the number of queries manipulating it over time. Figure 14 gives an example of such a visual
report, where the user can either see the trend for all entities, or select the entity/entities of interest.

Polystore queries view

The user can then have a finer-grained look at the TyphonQL queries executed by the TyphonQL engine on the
polystore. In the query view, the tool provides the user with two searchable lists:

• the list of the most frequent query categories, in decreasing order of number of occurrences, as shown
on the left of Figure 15;

• the list of slowest queries, in decreasing order of execution time, as shown on the right of Figure 15.

Note that the user can also get the same lists, by considering a particular period of time. She can also search
for particular queries using the search bar.

By looking at the query view, the user can figure out that the most frequent query category corresponds to the
following TyphonQL query, that deletes a user based on his id:

delete User x0 where x0.id == "?"

A total of 39 occurrences of this query category where executed, with an average execution time of 405 mil-
liseconds.

The following TyphonQL query was the slowest query during the entire considered period:

from Address x0, User x1 select x0, x1 where x0.user == x1 and x0.country == "w0Jn9A"

Page 12 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 12: Distribution of CRUD operations and entity accesses during a particular period of time

Its execution took 8.670 milliseconds (fictitious duration).

By clicking on the DETAILS button, the user can get finer-grained information about the category of a particular
query. For instance, at Figure 16, one can observe that the duration of the slowest query shown above used
to be shorter in the past, but that it increased recently. On the right of the page, the tool provides links to the
entities involved in the inspected query. In this case, the query involves a join between entities Address and
User.

By inspecting entity Address, shown in Figure 17, one can observe that its size has dramatically increased in
the considered period of time. At the beginning of the period, it included 1.000 records, while it currently
includes 10.000 records. Entity User followed exactly the same trend in terms of size, as shown at Figure 18.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 13

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 13: Distribution of CRUD operations over time, expressed in number of queries

Figure 14: Number of queries accessing the (selected) polystore entities over time

Page 14 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 15: General overview of the most frequent query types (left), and of the slowest queries (right)

Figure 16: Duration of a particular query type over time

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 15

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 17: Evolution of the size of entity Address over time

Page 16 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 18: Evolution of the size of entity User over time

2.4 Step 4: Recommending polystore schema reconfigurations

When inspecting a particular (slow) query, the user can ask the tool for recommendations on how to improve
the execution time of the query. When possible, the tool then recommends polystore schema reconfigurations,
in the form of a menu with clickable options, including one of several recommendations. Some of the provided
recommendations may be mutually-exclusive, which means that they cannot be selected together in the menu.

The example recommendations shown in Figure 19 correspond to the slow TyphonQL query presented above.
This slow query involves a join between entities User and Address and a selection operator based on the value
of the Address.country attribute. In this case, the continuous evolution tool recommends two possible, non-
exclusive schema reconfigurations that respectively consist in:

• defining an index on column AddressDB.country, which maps with attribute Address.country;
• merging entity Address into entity User, via the one-to-one relation "Address.user" that holds between

them.

By positioning the mouse pointer on the information icon, the user can get further information about the
expected positive impact of the recommended schema change on the execution time of the query.

Adding an index on a column c is a well known technique to speed up a query including an equality condition
on c in its where clause. In the particular case of the considered query, attribute Address.country is used in an
equality condition. As we can observe in the TyphonML model of Figure 2, there is no index defined on table
AddressDB, mapped with entity Address. Hence the recommendation made to the user to define an index on
column AddressDB.country.

Merging two entities into a single entity constitutes another recommendation that allows to avoid a costly join
condition in a slow query. In our example, the recommendation to merge entity Address into entity User is

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 17

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 19: Schema evolution recommendations related to a particular (slow) query

Figure 20: Selection of the schema evolution recommendations to apply to the polystore

motivated by the fact that the two entities are linked together via a one-to-one relationship (thus have the same
number of records), and that both entities rapidly grow in terms of size, making the join condition slower and
slower.

Another possible recommendation (not relevant in our example) is to migrate an entity from a database to
another. For instance, let us assume that entity Address would be mapped to a document database (a MongoDB
collection), while entity User would be mapped to a relational table. The join condition of the considered query
would probably be even slower, since it would involve to separately query two different databases, and then to
aggregate the results in the form of a join. In this case, our tool would provide as possible recommendation to
migrate one of the entities (e.g., Address) to the other database. But this would be an exclusive choice with the
merge recommendation, since the latter would include the migration of the entity.

2.5 Step 5: Applying the selected recommendations

Using the option menu, the user may then choose which evolution recommendation(s) (s)he wants to actually
follow by selecting the desired option(s), as shown in Figure 20. Once this selection has been done by the user,
the user can click on the copy change operators to clipboard button. The tool will then automatically generate
the list of schema evolution operators corresponding to the selected recommendations (see Figure 21). Those

Page 18 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

changeOperators [

AddIndex {table ’AddressDB’ attributes (’Address.country’) }

merge entities User Address as ’Address.user’

]

Figure 21: Schema evolution operators corresponding to the recommendations selected at Figure 20

operators are expressed according to the TyphonML textual syntax (TML). So the user can simply paste the
operators from the clipboard to the TML file of his TML schema, and then invoke the schema evolution tool
via the Typhon API by passing the modified TML file as input.

The schema evolution tool will then apply the recommended schema reconfigurations to the polystore. This
includes the adaptation of the polystore TyphonML schema, of the underlying native structures and of the data
instances. Upon request of the user, the query evolution tool (presented in deliverable D6.4 [7]) can support
the adaptation of existing TyphonQL queries

The schema evolution tool will produce the new TyphonML schema, where attribute country has now been
indexed, and where entity Address has been merged into entity User. The resulting TyphonML model as
shown in Figure 22 (in TML format).

Thanks to the query evolution tool, the slowest TyphonQL query category identified at Step 3:

from Address x0 , User x1 s e l e c t x0 , x1 where x0 . u s e r == x1 and x0 . c o u n t r y == " ? "

can be automatically adapted, resulting in the following output TyphonQL query:

from User x1 s e l e c t x1 where x1 . c o u n t r y == " ? "

The output query does not include any join condition on two entities. Its where clause includes an equality
condition on an attribute that is now indexed. The performance of the query should therefore be significantly
better than in the initial situation.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 19

D6.5 Hybrid Polystore Continuous Evolution Tools

entity Review{

id : string[32]

content : string[32]

product -> Product[1]

}

entity Product{

id : string[32]

name : string[32]

description : string[32]

reviews :-> Review."Review.product"[0..*]

}

entity OrderProduct{

id : string[32]

product_date : string[32]

totalAmount : int

paidWith -> CreditCard[1]

}

entity User{

id : string[32]

name : string[32]

streetName: string[32]

streetNumber: string[32]

zip: string[32]

city: string[32]

country: string[32]

comments :-> Comment[0..*]

paymentsDetails :-> CreditCard[0..*]

orders -> OrderProduct[0..*]

}

entity Comment{

id : string[32]

content : string[32]

responses :-> Comment[0..*]

}

entity CreditCard{

id : string[32]

number : string[32]

expiryDate : string[32]

}

relationaldb RelationalDatabase{

tables{

table {

UserDB : User

index userIndex{

attributes (’User.country’)

}

idSpec (’User.name’)

}

table {

ProductDB : Product

index productIndex{

attributes (’Product.name’)

}

idSpec (’Product.name’)

}

table {

CreditCardDB : CreditCard

index creditCardIndex{

attributes ("CreditCard.number")

}

idSpec ("CreditCard.number")

}

table {

OrderDB : OrderProduct

index orderIndex {

attributes ("OrderProduct.id")

}

idSpec ("OrderProduct.id")

}

}

}

documentdb DocumentDatabase{

collections{

CommentsDB : Comment

ReviewDB : Review

}

}

Figure 22: TyphonML model obtained after applying the selected recommendations

Page 20 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

MariaDB

SQLServer

PostgreSQL

TML
schema

Ingestion
scripts

TYPHON
Polystore

2. deployment

Input
databases

Intermediate
files

Populated
polystore

3. ingestion

1. extraction

Figure 23: Overview of the process followed by the data ingestion tool

3 Data Ingestion Tool

The Data Ingestion tool aims to ease the adoption of the Typhon innovative technologies. It allows one to
ingest data from (a set of) pre-existing relational database(s) into a Typhon polystore.

The data ingestion process relies on fours steps, as depicted in Figure 23:

• Step 1 - extraction: The tool first reverse-engineers the relational database schema of each input
database, in order to produce a TyphonML schema. It also generated a set of data ingestion scripts
allowing to transfer the data from the input relational database(s) towards the polystore, as soon as the
latter will be deployed.

• Step 2 - deployment: The user takes the automatically extracted TML schema, and uses as starting
point to manually deploy a new (empty) Typhon polystore. This deployment step can be done by means
of the tools provided by Work Package 3.

• Step 3 - ingestion: The user can then execute the generated data ingestion scripts in order to populate
the freshly created polystore with the data extracted from the input relational databases.

3.1 Step 1: Extraction

The extraction phase mainly consists in extracting the data structures (schemas) of the relational databases
given as input, and to abstract those data structures into a TyphonML schema. This schema abstraction process
is achieved according to the following abstraction rules.

• each table including at least one non-foreign key column becomes a conceptual entity;
• each non-foreign key column of a table becomes an attribute of the corresponding entity;
• each foreign-key becomes a one-to-many relationship;
• each table that only consists in two foreign keys referencing respectively table t1 and table t2, becomes

a many-to-many relationship between the corresponding entities;
• all relational schema elements including identifiers and indexes are also translated into corresponding

TyphonML schema constructs.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 21

D6.5 Hybrid Polystore Continuous Evolution Tools

Product
id
name
price
id: id

Details
order_id
product_id
id: order_id

product_id
ref: order_id
ref: product_id

Orders
id
date
total
customer_id
id: id
ref: customer_id

Customer
id
firstname
lastname
address
id: id

Figure 24: Example schema of an input relational database

0-N

0-N

details

1-10-N place

Product
id
name
price
id: id

Orders
id
date
total
id: id

Customer
id
firstname
lastname
address
id: id

Figure 25: Conceptual abstraction of input schema of Figure 24

As an example, let us consider the input relational schema of Figure 24. This schema includes 4 tables:
Customer, Orders, Product and Details.

The input schema of Figure 24 would be abstracted as three entities, as shown in the conceptual schema of
Figure 25. Tables Customer, Orders and Product have been translated into corresponding entities. Table
Details has been abstracted as a many-to-many relationship. The foreign keys in table Orders referencing table
Customer has been abstracted as a one-to-many relationship between the corresponding entities.

This conceptual abstraction will lead to the production of the TyphonML schema given in Figure 26. This
schema can be used as starting point of the deployment step (Step 2).

In order to connect to the input databases, the data ingestion tool requires the user to specify the required URL
and credentials. This information must be contained in a configuration file ("extract.properties"). In this file,
one can specify the connection information of one or several relational databases.

The following extraction parameters can be specified, for each input relational database:

• URL : the JDBC URL necessary to connect to the database.
• DRIVER : the JDBC driver necessary to connect to the database.
• USER : a user login with reading permissions.

Page 22 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

entity Orders{

"id": string[32]

"date" : date

"total" : float

"Customer" -> Customer[1]

"Product" -> Product[0..*]

}

entity Customer{

"id" : string[32]

"firstname" : string[32]

"lastname" : string[32]

"address" : string[32]

}

entity Product{

"id": string[32]

"name": string[32]

"price": float

"Orders" -> Orders[0..*]

}

relationaldb RelationalDatabase{

tables{

table {

"Orders" : "Orders"

idSpec ("Orders.id")

}

table {

"Customer" : "Customer"

idSpec ("Customer.id")

}

table {

"Product" : "Product"

idSpec ("Product.id")

}

}

}

Figure 26: TyphonML model extracted from the input relational schema of Figure 24

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 23

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 27: Example of configuration for the extraction step

• PASSWORD : the user password.
• SCHEMA : the name of the input database schema name to connect.
• DOCUMENT_SPLIT : this parameter is optional. It allows the user to specify the database column(s)

that will be migrated in a document database of the polystore (currently MongoDB). All other columns
will be migrated into a relational database of the polystore (default behavior).

• MAX_SQL_QUERIES_PER_FILE: this parameter specifies the maximal number of insert queries per
data ingestion script. This parameter can be useful in presence of a huge amount of records to ingest to
the polystore.

• MAX_JSON_RECORDS_PER_FILE: in case the DOCUMENT_SPLIT parameter is used, the plugin
will generate JSON files containing the JSON records to ingest in the polystore document database.
Like the relational data ingestion scripts, the user can specify the maximal number of json records per
ingestion file.

In the case of several input relational databases, the user can use a suffix for each of the above parameters.
Following the pattern PARAMETER#DB, i.e URL2 will be the URL of the second database, URL3 will be the
URL of the third database,. . .

Figure 27 provides an example of configuration file. In this example, at line 6, the user indicates that col-
umn history of table Employee must be migrated in a document database in the polystore, as well as column
nbOfEmployees of table Department.

Page 24 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Figure 28: Data ingestion parameters

3.2 Step 2: Deployment

The polystore deployment step simply consists in deploying a new polystore by using the TyphonDL tools
(WP3). This process takes as input the TyphonML schema automatically extracted at Step 1. We refer to the
WP3 deliverables for more details about the deployment process and supporting tools.

3.3 Step 3: Ingestion

Once the new target polystore has been created and deployed, the last step consists in executing the data
ingestion scripts generated at Step 1.

The execution of those scripts also requires to specify the URL and credentials required to connect the relational
database of the polystore and, optionnaly, to the document database of the polystore. This information must
be defined in the inject.properties file. Figure 28 gives an example of structure for this configuration file. The
following parameters are required:

• RELATIONAL_DB_URL: the JDBC URL required to connect to the relational database of the target
polystore.

• RELATIONAL_DB_DRIVER: the JDBC driver required to connect to the relational database of the
target polystore2

• RELATIONAL_DB_USERNAME: a user login with reading permissions.
• RELATIONAL_DB_PWD: the user password.
• DOCUMENT_DB_URL_WITH_AUTH: the URL to connect to the document database of the target

polystore3.

Once the configuration file has been edited, the data ingestion process can be launched, depending on the
operating system:

• For Windows: sql_extract.bat -inject inject.properties output/data
• For Linux: sql_extract.sh -inject inject.properties output/data

Where inject.properties is the configuration file described above and output/data is the directory containing
the SQL/JSON migration scripts generated during the extraction phase (Step 1). Once the data ingestion is
completed, the polystore is populated and ready to use.

2At the time of writing, only MariaDB is supported as target relational database.
3At the time of writing, only MongoDB is supported as target document database.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 25

D6.5 Hybrid Polystore Continuous Evolution Tools

4 Summary of WP6 contributions

In this section, we summarize the contributions of Work Package 6, by assessing the coverage of the technical
requirements (see Table 1) and of the use case requirements (see Table 2) specified in deliverable D1.1.

Regarding the technical requirements:

• Requirement 57 is covered. A dedicated schema change API, callable from the TyphonML editor
or from the user has been implemented. This schema evolution and data migration component was
presented in deliverable D6.3 [6].

• Requirement 58 is covered. A query evolution tool has been developed. It allows users to adapt
TyphonQL queries to an evolving TyphonML schema, when possible, i.e., in the case of data-preserving
schema changes (e.g., rename attribute, merge entities, etc.). The query evolution tool was presented in
deliverable D6.4 [7].

• Requirement 59 is partially covered. The query evolution, presented in deliverable D6.4 [7], is indeed
able to identify TyphonQL queries that have become invalid due to non-data-preserving schema changes
(e.g., delete entity) applied to the polystore schema. Those invalid queries are marked as broken in the
output set of queries. In some cases (e.g., change attribute type), the tool may simply mark an output
query with a warning, which means that the context of the TyphonQL query requires manual inspection.

• Requirement 60 is covered. Data-preserving, intra-paradigm schema changes are propagated at the
level of the data instances, by exploiting the power of TyphonQL for (1) reading data according to the
source polystore schema, (2) adapting the native data structures, and (3) (re)writing data according to
the target polystore schema. The schema evolution tool was presented in deliverable D6.3 [6].

• Requirement 61 is covered. Cross-paradigm schema change scenarios are supported through the mi-
grate entity schema evolution operator, presented in deliverable D6.3 [6]. This operator allows the
automatic migration of a TyphonML entity from a database platform to another (e.g., from a relational
to document database, or vice versa). Here again, the schema evolution tool benefits from the power of
TyphonQL, without directly accessing the native databases involved in such migration scenarios.

• Requirement 62 is covered. The continuous evolution tool presented in the present deliverable (D6.5)
suggests data-preserving polystore reconfigurations, based on database usage performance monitoring.

Regarding the use case requirements:

• Requirement 77 is covered; it corresponds to technical requirement 60.
• Requirements 78 and 79 are covered; they correspond to technical requirement 61.
• Requirement 80 is partially covered in the sense that the migrate operator currently considers the Ty-

phonML entity as granularity level. In other words, it migrates the data of one entity at a time.
• Requirement 81 is partially covered in the sense that the migrate operator makes use of TyphonQL to

read the input data, to create the target native data structures and to write data to those target structures.
Therefore, as soon as TyphonQL will support a future new data source, the migrate operator should still
be able to migrate data from this data source, possibly with minor modifications.

• Requirement 82 is covered; it relates to technical requirement 61.
• Requirement 83 is not covered. It would require to exploit the pre-authorization mechanisms of Work

Package 5 to temporarily prevent the execution of those TyphonQL queries that would impact/be im-
pacted by the real-time data migration process.

• Requirements 84-85 are not covered. They could, however, be covered in the future, in case TyphonQL
would support Hive as native database backend.

Page 26 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Number Requirement Priority Status

57 The schema evolution methodology and tools
shall support the propagation / impact analy-
sis of TyphonML polystore schema changes
via a dedicated schema change API, callable
from the TyphonML editor

SHALL Covered

58 The Hybrid Polystore Query Evolution Tools
shall support the automated propagation of
data-preserving TyphonML polystore schema
changes to related TyphonQL queries (consis-
tency preservation)

SHALL Covered

59 The Hybrid Polystore Query Evolution Tools
may assess the impact of non-data-preserving
polystore schema changes to the other poly-
store components, by identifying invalid Ty-
phonQL queries (inconsistency detection)

MAY Partially covered

60 The Hybrid Polystore Data Migration Tools
shall support intra-paradigm data migration,
i.e., in reaction to data-preserving modifi-
cations applied to the TyphonML polystore
schema, without changing the database plat-
form(s)

SHALL Covered

61 The Hybrid Polystore Data Migration Tools
shall support cross-paradigm data migration,
i.e., in reaction to a data-preserving reconfig-
uration of the polystore involving a database
platform change (e.g., migrating some poly-
store data from a relational DB to a NoSQL
DB, or vice versa)

SHALL Covered

62. The Hybrid Polystore Continuous Evolution
Tools shall suggest data-preserving reconfigu-
rations of the polystore based on database us-
age performance monitoring

SHALL Covered

Table 1: Coverage of technical requirements related to Work Package 6

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 27

D6.5 Hybrid Polystore Continuous Evolution Tools

Number Requirement Priority Status

77 The polystore data migration tools shall al-
low to migrate data stored under different
database technologies (SQL, NoSQL) within
the polystore

SHALL Covered

78 The polystore data migration tools shall allow
to migrate the structure of the database in-
stances stored under different database tech-
nologies (SQL, NoSQL) within the polystore

SHALL Covered

79 The polystore data migration tools shall al-
low the bidirectional migration of data be-
tween different database technologies within
the polystore

SHALL Covered

80 The polystore data migration tools should al-
low the bidirectional migration of parts of
the structure of the database instance be-
tween different database technologies within
the polystore

SHOULD Partially covered

81 The polystore data migration tools should
support migrating data from future new data
sources

SHOULD Partially covered

82 The polystore data migration tools shall en-
sure data is not lost during data migration

SHALL Covered

83 The polystore data migration tools may sup-
port data migration in real-time

MAY Not covered

84 The polystore data migration tools may sup-
port migration from SQL database to Hive
structures

MAY Not covered

85 The polystore data migration tools may sup-
port migration from XML files to Hive struc-
tures

MAY Not covered

86 The polystore data migration tools may sup-
port migration from text files to Hive struc-
tures

MAY Not covered

Table 2: Coverage of use case requirements related to Work Package 6

Page 28 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

Beyond the initial WP6 technical and use case requirements identified in deliverable D1.1, an additional WP6
tool has been developed upon request of our use case partners. This tool, presented in this deliverable, supports
the automated ingestion of data from pre-existing relational databases into a newly deployed Typhon polystore.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 29

D6.5 Hybrid Polystore Continuous Evolution Tools

5 Conclusions

In this deliverable, we have presented the Typhon continuous evolution tools that automatically suggest poly-
store reconfigurations to the user, by exploiting the monitoring mechanisms developed in Work Package 5.
Starting from the capture and analysis of the polystore query events, the tool provides the user with visual ana-
lytics of the polystore data usage. The user can see, among others, which types of queries access which entities,
which query categories are the most frequent, and which queries suffer from a lack of performance. The tool
then makes, for each query category considered as problematic, possible schema reconfiguration recommen-
dations aiming the speed-up the execution considered query. The user can then select the recommendations
to follow, and then apply the associated schema evolution operators, using the components presented in our
previous deliverables (see D6.3 [6] for schema change and data migration, and D6.4 [7] for query adaptation).

We have also presented an additional data ingestion tool, that we developed on request of our use case part-
ners. This data ingestion tool supports the ingestion of data from pre-existing relational databases into a new
polystore. As a first step, the data ingestion tool automatically extracts a TyphonML model M , abstracting the
data structures of the input database(s). It also produces an executable data ingestion script that allows one to
populate the polystore with the data contained in the input database. This ingestion script can be executed once
the new polystore has been created and deployed using model M .

The main next steps in Work Package 6 include: (1) to continuously improve the WP6 tools according to
the feedback we will receive from our use case partners, and (2) to further disseminate our research and
development results to a wide audience, e.g., via the participation to international events and the submission
of papers to international venues.

Page 30 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D6.5 Hybrid Polystore Continuous Evolution Tools

References
[1] Centrum Wiskunde & Informatica (CWI). D4.2 – Hybrid Polystore Query Language (TyphonQL), 2018.

[2] Centrum Wiskunde & Informatica (CWI). D4.3 – TyphonQL Compilers and Interpeters (Initial Version),
2018.

[3] The University of L’Aquila. D2.3 – Hybrid Polystore Modelling Language (Final Version), 2018.

[4] The University of L’Aquila. D2.4 – TyphonML Modelling Tools, 2019.

[5] University of Namur. D6.2 – Hybrid Polystore Schema Evolution Methodology and Tools, 2018.

[6] University of Namur. D6.3– Hybrid Polystore Data Migration Tools, 2019.

[7] University of Namur. D6.4– Hybrid Polystore Query Migration Tools, 2019.

[8] The University of York. D5.2 – data event organisation and representation report, 2018.

[9] The University of York. D5.3 – data event publishing and processing report, 2019.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 31

	Introduction
	Purpose of the deliverable
	Relationship to other Typhon deliverables
	Contributors
	Structure of the deliverable

	Continuous evolution tool
	Step 1: Capturing TyphonQL queries
	Step 2: Parsing and classifying TyphonQL queries
	Step 3: Visual analytics of polystore data usage
	Step 4: Recommending polystore schema reconfigurations
	Step 5: Applying the selected recommendations

	Data Ingestion Tool
	Step 1: Extraction
	Step 2: Deployment
	Step 3: Ingestion

	Summary of WP6 contributions
	Conclusions

