
Project Number 780251

D2.2 Text Modelling Extension

Version 1.1
27 December 2018

Final

Public Distribution

Edge Hill University

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, Nea Odos, The Open Group, University of L′Aquila, University of Namur,
University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the TYPHON Project Partners.

D2.2 Text Modelling Extension

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
Nea Odos The Open Group
Charalampos Daskalakis Scott Hansen
Themistocleous 87 Rond Point Schuman 6, 5th Floor
106 83 Athens 1040 Brussels
Greece Belgium
Tel: +30 210 344 7300 Tel: +32 2 675 1136
E-mail: cdaskalakis@neaodos.gr E-mail: s.hansen@opengroup.org
University of L′Aquila University of Namur
Davide Di Ruscio Anthony Cleve
Piazza Vincenzo Rivera 1 Rue de Bruxelles 61
67100 L’Aquila 5000 Namur
Italy Belgium
Tel: +39 0862 433735 Tel: +32 8 172 4963
E-mail: davide.diruscio@univaq.it E-mail: anthony.cleve@unamur.be
University of York Volkswagen
Dimitris Kolovos Behrang Monajemi
Deramore Lane Berliner Ring 2
York YO10 5GH 38440 Wolfsburg
United Kingdom Germany
Tel: +44 1904 325167 Tel: +49 5361 9-994313
E-mail: dimitris.kolovos@york.ac.uk E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Document Control
Version Status Date

0.1 Document outline 24th September 2018
0.2 First draft 10th October 2018
0.7 First full draft 28th November 2018
0.8 Further editing draft 8th December 2018
1.0 Review version 10th December 2018
1.1 Final QA updates 27th December 2018

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page iii

D2.2 Text Modelling Extension

Table of Contents

1 Introduction 1

1.1 Overview . 2

1.2 Intentions . 2

1.3 Outcomes . 3

2 Literature Review 4

2.1 Types of Text Annotations . 4

2.2 Text Modelling and Processing Frameworks . 6

2.2.1 TIPSTER . 6

2.2.2 Ellogon . 6

2.2.3 GATE . 8

2.2.4 Heart of Gold (HoG) . 8

2.2.5 UIMA . 9

2.3 Type-Systems and Text-Types . 10

3 Typhon Text Data Type System 13

3.1 Overview of developed Type systems . 13

3.1.1 General Data Types . 13

3.1.2 Syntactic Data Types . 19

3.1.3 Semantic Data Types . 22

4 Extensibility and Flexibility of Typhon Type System 27

5 Use cases 28

5.1 Alpha Bank . 29

5.2 Volkswagen . 29

5.3 GMV . 30

5.4 Nea Odos . 31

6 Sentiment Analysis: A use case application of the Typhon text data type system 34

6.1 Sentiment Analysis Typhon Type System . 34

6.2 Sentiment Analysis UIMA pipeline . 35

6.3 Evaluation of the Sentiment Analysis pipeline . 36

6.3.1 Performance of pre-processing components . 37

6.3.2 Performance of classification algorithms . 37

Page iv Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

6.3.3 Performance of feature weighting schemes . 37

6.3.4 Performance of feature types . 38

6.3.5 Performance of feature filtering . 39

6.4 Summary . 39

7 Risks 44

8 Typhon requirements 45

9 Conclusion 47

A NLP Tasks and Data Types 55

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page v

D2.2 Text Modelling Extension

Executive Summary

Text modelling is used to identify data-types and their relations in text. It is a basis for text processing com-
ponents and is essential step in text platforms such as UIMA. We present a type system required to support
TyphonML, i.e. a new modelling language to support the design of hybrid polystores. We also evaluate our
type system by developing text mining pipelines that build upon the type system in order to extract various
type of information from large-scale collections, such as base form of words, i.e. stems, and polarity of text.

Firstly, we review previous literature related to different types of text annotations, i.e. standoff and inline, var-
ious platforms supporting annotation, i.e. Tipster, General Architecture for Text Engineering (Gate), Ellogon,
Heart of Gold(HoG) and Unstructured Information Management applications (UIMA), and type-systems. Con-
sequently, we found from the literature, after a comparison on standoff and inline annotations that standoff an-
notation are more beneficial for our purposes in this project. As for the platform, we chose UIMA due to its
multiple benefits.

We categorised data-types according to the type of textual unit, i.e. Document level, Paragraph level, Sen-
tence level, Phrase level, and Token level, and also according to the type of information that they annotate,
i.e. syntactic or semantic. Extendibility and flexibility of our type system is demonstrated with some use-case
examples specific for different project partners requirements.

Lastly, we demonstrate how the proposed Typhon text data type system can be used for the development of
text processing pipelines in the real-world. We develop different sentiment analysis UIMA text processing
pipelines and evaluate the performance against other several publicly available datasets. Consequently, the
results show that our type system can aid rapid development of sentiment analysis pipelines wherein text
processing components can be freely combined using shared data types.

Page vi Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

1 Introduction

Most search and analytics engines, such as ElasticSearch1, allow searching text efficiently, however they have
limited search capabilities other than plain text, for instance, keyword-based search. To allow more complex
queries, such as faceted or semantic search, annotations, that are automatically extracted from text using text
processing pipelines, can be added in existing search engines as facets. For example, consider a conventional
keyword-based search that uses the query “Apple”. Considering that this query is ambiguous, a keyword-based
search will return documents referring both to “Apple” the IT company and documents referring to “Apple”
the fruit. However, using text mining we can automatically identify the semantic roles of keywords, i.e. Organ-
isation vs. Fruit, and then use semantic roles to enable efficient faceted search. In a faceted search scenario, a
user is able to include the facet “Organisation” to the keyword “Apple” in order to retrieve documents that are
relevant to “Apple” the IT company only and not to “Apple” the fruit.

Text modelling identifies data types for storing text and the relationships between them [12]. It helps to design
text mining tasks and is a gateway to create text processing pipelines. Additionally, it allows developing com-
plex text processing components helpful in facet searches, e.g. search for the sense of bank that relates to rivers
rather than financial institutions, identifying new information, e.g. categories or classes, modelling topics and
classifying text. Text modelling supports data abstraction [30]. Text can be combined or replaced with other
text data types, if required. For example, words can be replaced with their corresponding lemma forms, which
leads to better indexing and more efficient search [44]. For instance, a search query for the lemma “computer”
will retrieve documents that contain the words “computing”, “computers” and “computer”, since these words
have the same lemma, i.e. compute. Moreover, text modelling can improve the quality of semantic retrieval.
For example, when searching for “iPad”, the query term will be semantically associated with the organisation
Apple [74]. Therefore, in a sentiment analysis application for example, we link “iPad” and “iPhone” as prod-
ucts of the same company. If “iPad” has been reviewed positively, “iPhone” may too. Furthermore, semantic
disambiguation can subsequently improve machine translation, e.g. “Apple” in the above example refers to the
company and not the fruit.

Text data types can be categorised according to the type of the textual unit that they annotate, such as Document
level, Paragraph level, Sentence level, Phrase level and Token level. They can also be categorised according
to the type of information that they annotate, for instance syntactic or semantic. Syntactic data-types include
Part of Speech (PoS) tags, syntactic dependencies and lemmas. Semantic data-types can be named entities,
document polarities, facts, events, domain or negations.

Textual data types can also be divided into complex and primitive ones. Complex data types contain attributes,
i.e. references to other data types, which can in turn be either complex or primitive. An attribute is a property
that helps to describe an instance of the type. A primitive data type can only contain one value which is either a
String, Boolean (true or false) or a numerical value. For example, a phrase is a complex data type that consists
of the following attributes: begin offset, end offset and a list of words. The begin and end offsets are primitive
data types, in particular integers, which denote the offsets of a word\phrase within the document they occur.
The list of words is a complex data type which references the constituent words of the phrase.

There are many Natural Language Processing (NLP) tools for designing and developing data type systems,
i.e. collection of data types including the relationships between them. Examples of these tools include Tip-
ster, the General Architecture for Text Engineering (GATE), Ellogon, the Heart of Gold (HoG) and IBM’s
Unstructured Information Management Architecture (UIMA). UIMA has many advantages over other NLP
frameworks. Bank and Schierle [4] argue that UIMA is the most evolved and comprehensive architecture
available. They compared UIMA against other frameworks and found that it is better. UIMA is Apache li-

1www.elastic.co/products/elasticsearch

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 1

www.elastic.co/products/elasticsearch

D2.2 Text Modelling Extension

censed and is standardised. It can integrate different standard file formats like XMI, Ecore, XML, OCL or
BPEL. Furthermore, it provides parallelisation and distribution of processing resources [4]. It is also the only
architecture that provides resource management and analysis-aware parameter handling [4].

UIMA allows users to define a type system which provides clear metadata about expected data types: inputs,
e.g. tokens and sentences, and outputs, i.e. emotion or polarity labels [4]. The type system can specify data
structures useful for the processing and sharing of information. Type systems allow data types to pass flexi-
bly between components of an NLP system [4]. UIMA support stand-off annotations, meaning that they do
not interfere or change the input text [79]. Stand-off annotations have several advantages over inline annota-
tions. They identify annotations from overlapping hierarchies [31]. For example, when identifying paragraphs,
sentences and tokens which offsets overlap with each other. In UIMA, they are annotated separately from the
original file. Another example is overlapping semantic and syntactic types. They can be dealt with separately
and independently. Finally, stand-off annotations can handle text which is read-only or secured [79].

In this deliverable, we present a type system of data types related to text processing and inspired by the analysis
of textual data contributed by Typhon use case partners. The type system is part of TyphonML, a new modelling
language, developed as part of Typhon, to support the design of hybrid polystores. Using this type system and
the corresponding text processing workflows, textual data in the polystore will be processed and enriched with
extra information that allow for sophisticated search capabilities. In this deliverable, we also evaluate our type
system by building example sentiment analysis workflows on top of it. The workflows extract various types
of information from large-scale collections of text, such as stems, the base form of words, and the polarity of
sentiment expressed in text. In the following subsections, we will present an overview for the deliverable, the
intentions and the outcomes.

1.1 Overview

The deliverable consists of nine sections. In section 2, we review the state-of-art in text modelling. This
includes literature related to text annotations, platforms that support text annotations and existing type systems.
In section 3, we present the type system that was developed to address the general text processing requirements
of Typhon use case partners. Section 4 emphasises the ease of extensibility of the type system, in case of further
text processing needs, and explains that this work can be used as a pilot for adding support for other types of
data, such as images and video, to Typhon polystores. In section 5, we demonstrate how (a part of) the type
system is extended to cover text processing needs that are specific to each Typhon use case partner. Section 6
presents an application of the type system for sentiment analysis and our experiments on large collections of
text. The risks and shortcomings are illustrated in section 7. Typhon text processing requirements are revisited
in section 8 followed by the conclusion, in section 9.

1.2 Intentions

The objective of this deliverable is to present the findings and conclusions of our investigation of text-related
data types to be integrated into TyphonML. The state-of-the-art of NLP architectures is explored, explaining
their advantages, disadvantages and possible consequences and risks associated with their use.

The text processing requirements of Typhon use case partners were analysed and a type system that addressed
them has been developed. We collaborated with the University of L’Aquila (UDA) to ensure the data types
are consistent with TyphonML. We have also started working with the Institut für angewandte Systemtechnik
Bremen GmbH (ATB) on how text processing pipelines will be deployed and executed within the hybrid
polystore.

Page 2 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Figure 1: Text Modelling and Type System in the Context of Typhon Polystores

To verify that the newly developed type system is fit for our purpose, we developed a number of text processing
workflows for sentiment analysis, we executed multiple experiments and evaluated them using state-of-the-art
metrics. Consequently, we achieved competitive results in comparison to previously published research.

1.3 Outcomes

The outcome of this deliverable is a type system for text processing to be integrated into TyphonML. The type
system contains both generic types and specialised ones for particular tasks, such as rule and pattern matching
and machine learning classification.

Figure 1 illustrates an example of how text modelling and the newly developed type system fit into the Typhon
project. In this example, there are two types of users, namely User 1, a Typhon database owner responsible for
creating and maintaining a database and User 2, a Typhon user who wishes to analyse or search for information
stored in the textual fields (e.g. customer review, product description) of the database. User 1 defines the
different types of information found in the textual fields of the database while User 2 forms faceted queries
that are compatible with the data types defined by User 1. More specifically, User 1 uses the TyphonML to
define a) appropriate text data types from the Typhon text data type system that will be used to annotate the
textual fields of the database and b) text processing pipelines (implemented using the UIMA framework) that
analyse the textual fields of the database and generate the required text data types. The produced text data
types are subsequently stored and indexed in ElasticSearch. User 2 uses TyphonQL to develop faceted queries
where query-keywords are assigned to facets corresponding to the text data types indexed in ElasticSearch. For
example, the following faceted query: “volkswagen suv tiguan”, year: 2018, sentiment: “Negative”, assigns
the facets year and sentiment to the query keywords 2018 and Negative, respectively. The query is dealt with
by TyphonQL, which accesses ElasticSearch to retrieve matching entries and shows them to User 2.

It should further be noted that the UIMA text processing pipelines, that populate the ElasticSearch back-ends
with text data types, are batch-processing rather than on-line processing tools. In practice this means that the
text processing pipelines are executed offline and not during query execution time. Text search capabilities
(e.g. faceted queries) will be made available to User 2 only after the UIMA pipelines have finished processing
the textual fields of the database.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 3

D2.2 Text Modelling Extension

2 Literature Review

This section covers prior work aimed at modelling text data types. The section firstly discusses differences
between stand-off and in-line text data types. It then reviews existing text modelling and processing platforms,
such as UIMA [20] and GATE [9], that support the design and development of text data type systems. Lastly
it explores previous approaches for modelling text data type systems.

2.1 Types of Text Annotations

Annotations (i.e. text data types) can either be in-line or stand-off [32]. Figure 2 illustrates the same input
document which is annotated using both in-line and stand-off annotations.

Figure 2: In-line (left-hand side panel) and stand-off (right-hand side panel) used to annotate the
same input document

In-line annotations, expressed in a mark-up language such as XML or JSON, constitute a simple, convenient
and straightforward way of annotating plain text documents [86]. They store the generated annotations within
the same plain text document where the natural language text (i.e. input to text processing components) is
actually located. However, when an input document already contains mark-up language and it is not stored in
a plain text format then the generated in-line annotations may change the format of the existing mark-up tags.
A second limitation of in-line annotations is that they overload the original document with additional content
which can be problematic when multiple text mining components wish to process the same document [84].
Moreover, synchronising multiple text mining components that interact with the same input document can be
a challenging task when using in-line annotations [31].

Page 4 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

In contrast to in-line annotations, stand-off annotations store the generated annotations in a separate location
while annotations are linked to the input document using reference pointers. Stand-off annotations do not alter
the content of the input document and they can thus be used to annotate any type of documents (e.g. plain text,
XML, JSON). In addition to this, Ide et al. [31] showed that multiple text mining components can seamlessly
interact with the same input document considering that each component stores the generated annotations in an
isolated location. However, a potential problem of stand-off annotations is that reference pointers need to be
re-computed when the content of the original document is changed [84].

Rebholz-Schuhmann et al. [70] presented a framework that defines an annotation and data exchange format for
modelling different text data types, such as sentences, tokens, terms, chunks and named entities. They further
defined a basic set of data types to enable interoperability between different annotation tags. They used in-line
annotations and justified their use for several reasons:

1. their research was in the biomedical field where 50% of the developers uses in-line annotation to store
text mining analysis results.

2. in-line annotations support different text encodings (e.g. ASCII, UTF-8, Unicode)

3. software tools that handle and visualise in-line annotations are widely available

Day et al. [17] created a new annotation tool Callisto which also supports in-line annotations. They claimed
that stand-off annotations caused versioning control problems when compared to in-line annotations. In a
similar vein, Ion [33] annotated a large Romanian corpus using in-line annotations to ensure compliance with
their web-services and workflows.

Several studies have also explored the use of stand-off annotations for modelling text data types [5, 57, 79,
50]. Basile et al. [5] developed a large annotated corpus using stand-off annotations. Nazarenko et al. [57]
introduced the ALVIS annotation format whose aim was to index stand-off annotations for developing a topic-
specific search engine.

Catalyst, a framework introduced by Mardis et al. [50], provided a data model which is based on stand-off
annotations. The authors highlighted that stand-off annotations are more efficient and easier to test and debug
when compared to in-line annotations. Additionally, stand-off annotations simplify the development process
of text mining pipelines considering that any new components added to the system would not affect existing
components.

Elsewhere in the literature, Nicolas et al. [59] used a combination of both in-line and stand-off annotations
to model different text data types. Document sectioning data types (e.g. paragraphs) were modelled using in-
line annotations. However, the authors noted that more complex data types that annotate discontinued spans of
text (e.g. co-referential expressions) are difficult to model using in-line annotations and they thus relied upon
a stand-off format to store and manage these data types.

In this project we choose stand-off over in-line annotations to model text data types produced by the Typhon
text processing pipelines for the following reasons. Firstly, stand-off annotations are easier to distribute within
a computer cluster considering that these are detached from the raw text documents. Thus, components of a
computer cluster need to exchange only the produced annotations and not the actual content of the text docu-
ments. Secondly stand-off annotations can be used to annotate any type of documents (e.g. plain text, XML,
JSON or textual attributes stored in a Typhon polystore) while prior work [59, 31] showed that stand-off anno-
tations can model a wide range of different text data types. Thirdly, the vast majority of existing text modelling
and processing frameworks, which are discussed in the next section, support stand-off annotations. Lastly,
stand-off annotations are data type agnostic since reference pointers can be linked to text, audio, image or

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 5

D2.2 Text Modelling Extension

video collections. As an example, stand-off annotations for audio files may use time offsets while annotations
over text may use character pointers.

2.2 Text Modelling and Processing Frameworks

Currently, there exist a number of text modelling and processing frameworks, including TIPSTER [24], Ell-
ogon [66], GATE [10], Heart of Gold [79] and UIMA [20], to name a few. The purpose of a text modelling
and processing framework is to facilitate the design and implementation of text data type systems, to aid in the
development of text mining components, to foster interoperability of components by defining standard com-
munication mechanisms and to support the execution and deployment of text mining pipelines (i.e. a chained
sequence of text mining components). Table 2.2 summarises advantages and limitations of existing text mod-
elling and processing frameworks.

2.2.1 TIPSTER

TIPSTER was designed to support the development of multilingual text mining applications and to enable
communication of heterogeneous components [4]. TIPSTER offers programming APIs in different languages
including C, Tel and Common Lisp. The architecture adopted by TIPSTER is document centric, where docu-
ments are stored in collections. Text data types are stored in a stand-off format and defined in a type declaration.
Each text data type may consist of a number of attributes while each attribute can either be a primitive (e.g. In-
teger, String, Boolean etc.) or a reference to another text data type or a reference to a document. TIPSTER
text data types are indexed and managed for easy access and usage for different use cases and applications.
The TIPSTER framework comes packaged with pre-defined text data types and attributes to facilitate interop-
erability of components. Moreover, TIPSTER implements a sophisticated typed annotation model which was
adopted by other platforms such as UIMA, GATE and Ellogon [4]. However, TIPSTER offers limited workflow
managements functionalities which in practice means that coordination of components into pipelined applica-
tions becomes challenging. Moreover, standardised parallelisation, distribution of processing and language
resources are not supported by TIPSTER.

TIPSTER has been previously used by prior work for modelling text data type systems. As an example Liddy
et al. [46] presented a TIPSTER-based type system consisting of paragraph, sentence and discourse-level
(e.g. current event, past event, opinion, potential future event) types.

2.2.2 Ellogon

Another multilingual and general purpose text modelling and processing framework is Ellogon [4]. It sup-
ports a wide range of languages using the Unicode encoding format [4]. Ellogon is built around three basic
subsystems:

• The Collection and Document Manager (CDM), which collects documents consisting of textual data
and text data types are stored in a stand-off format. Annotations and attributes contain identifiers which
are user-defined.

• Ellogon establishes relations between different components to automatically create pipelined applica-
tions.

• A component system which loads and integrates processing resources (i.e. modules) at runtime. Mod-
ules contain the implementation part of text mining components and declare the metadata for the frame-
work.

Page 6 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Table 1: Advantages and Disadvantages of the Platforms
Framework Advantages Disadvantage
TIPSTER Sophisticated annotation system (1) No parameter or resource management and

no great workflow management
(2) No interchangeability, standardized paral-
lelisation, distribution of processing and lan-
guage resources

Ellogon it offers the possibility to use com-
ponents as web services

(1) it only serial and cascaded workflows are
supported
(2) it does not have any analysis awareness or
resource management and creating parameters
is very basic
(3) it cannot inherit existing type definitions for
annotations or reuse metadata

GATE GATE has many GUI tools, data ac-
cess structures, language resources
and import filters for common doc-
ument formats.

(1) Lack of a sophisticated workflow manage-
ment

(2) No formal specification for individual re-
source management
(3) Type inheritance is not possible

HoG (1) Workflows are implemented in a
sequential, parallel and iterative ex-
ecution

(1) No parameter or resource management

(2) It does not impose a specific
DTD or Schemata for annotations

(2) Conditional workflows is not supported

(3) Expensive transformation algorithms for
XML formats

UIMA (1) It is the most evolved and com-
prehensive architecture available up
to now

(1) Analysis awareness of descriptor metadata

(2) It is Apache licensed and is stan-
dardized

(2) Lack of definition of data resources and ac-
cess structures for processing resources, docu-
ment and annotation model type systems

(3) It provides parallelisation and
distribution of processing resources

(3) Nested or cascaded workflows are not al-
lowed on the descriptor level.

(4) It is also the only architecture
that provides resource management
and analysis aware parameter han-
dling

(4) Information cannot be accessed by other
components if not specified by the architecture
itself.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 7

D2.2 Text Modelling Extension

One disadvantage of Ellogon is that only serial and cascaded workflows are supported, while parallel, condi-
tional, nested or iterative workflows are not. Additionally, it does not have any analysis awareness or resource
management and creating parameters is very basic. Moreover, it cannot inherit existing type definitions for
annotations or reuse metadata.

Petasis [65] used Ellogon to define a text data type system of tokens and named-entities such as the person’s
name and company’s name. Likewise, [36] presented an Ellogon-based type system consisting of morpho-
logical (i.e. part-of-speech annotation), phrase (e.g. syntactic annotation, named entities, sentiment analysis,
co-reference) and semantic (e.g. OWL ontology) types.

2.2.3 GATE

The General Architecture for Text Engineering (GATE) was created to provide an infrastructure for different
language engineering activities [16]. It consists of easy to use GUI editing tools. There are two central elements
in GATE:

• The GATE Document Manager (GDM) follows the TIPSTER specifications. Consequently, the collec-
tion of documents which have text and annotations can be modified online. The processing resources
receive the annotated documents from the GDM and then return them to other processing components.
Multiple annotation graphs per document can be created from one span of text.

• A Collection of Reusable Objects for Language Engineering (CREOLE) a library of processing and
language resources and data structures for general usage. CREOLE API can be used by users to ex-
tend CREOLE objects while CREOLE objects are initialised and applied to documents using the Gate
Graphical Interface (GGI). The CREOLE components must specify their configuration (either in XML
or in Java Annotations) which is subsequently used by GATE to construct pipelined applications.

GATE has many GUI tools, data access structures, language resources and import filters for common docu-
ment formats. Conditional processing and collection level processing are supported. However, iterative, nested
or parallel processing are not supported by GATE due to the lack of a sophisticated workflow management sys-
tem. GATE resources are separated and described using metadata which can be composed in the workflows.
Inheritance is facilitated and a document model with typed annotations is well defined. Some disadvantages of
GATE include its lack of a sophisticated workflow management system while the individual resource manage-
ment is not formally specified and the type inheritance is not possible.

GATE has been used for developing text data type systems by several previous studies [85, 10]. Volker et
al. [85] presented an ontology tool for querying Spanish linguistic data content. Their GATE-based text data
type system consisted of: tokens, sentences, POS-tags, Lemmas, and Jape transducer (for shallow parsing).
Bontcheva et al. [10] investigated the use of Gate for automatically identifying customisable named entities
from text such as person, date, money, organisation, percent and location type.

2.2.4 Heart of Gold (HoG)

Heart of Gold was developed to create and combine annotation produced by multiple components in multi-
lingual environments. Text data types are stored in XML stand-off markup [79]. Heart of Gold has a special
focus on facilitating the development of shallow and deep parsing workflows. Heart of Gold does not im-
pose a specific document type definition or predefined schemata for annotations. Consequently, there are no
explicit constraints on how data is stored. The core component of Heart of Hold is the Module Communica-
tion Manager which deals with the requests from components and it is responsible for returning results back

Page 8 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

to the components. The Module Communication Manager also organises workflows of processing resources,
the persistence layer and any data exchange that occur between components. Workflows are specified using
the System Description Language allowing sequential, parallel and iterative execution. Heart of Gold offers
no parameter or resource management and conditional workflows are not supported. Additionally, expensive
transformation algorithms are required due to the use of XML formats

Buitelaar et al. [13] presented an ontology-based information extraction system which uses Heart of Gold.
Their information extraction system automatically identifies named entities relevant to football while their
underlying text data type system includes: persons, locations, numerals, and date\time types. It also includes
some sub-entity types such as actors in football (i.e. trainer, player, referee). Additionally, football-specific
events (i.e. shots, headers), match events (i.e. goal, card) and match results are modelled. Similarly, Schafer
[79] used Heart of Gold to annotate documents. Their type system consists of tokens, chunks, POS-tags and
syntactic types identified by a shallow parser.

2.2.5 UIMA

The Unstructured Information Management Architecture (UIMA) is a framework developed by IBM that aids
in the analysis of unstructured content including text, video and audio data [4]. It allows reuse of analysis com-
ponents and reduces duplication of the development process considering that UIMA applications are modular
(i.e. pipelines), consisting of building blocks (i.e. text mining components) that can be re-used across different
pipelines. Similarly to other existing text modelling and processing framework, text data types are stored in a
stand-off format. UIMA supports a very flexible typed annotation model where text mining components pro-
vide clear metadata about expected inputs (i.e. tokens, sentences) and outputs (i.e. emotion or polarity labels).
It has enterprise-ready code making the execution and deployment process of text mining pipelines easier.
Moreover, UIMA has demonstrated scalability and interoperability while programming APIs are available in
Java and C++. A number of existing studies has demonstrated that UIMA-enabled pipelined applications can
efficiently address a number of complex text mining tasks [6, 40, 7]. As an example, Kolluru et al. [39] eval-
uated different pre-processing components, e.g. tokenisers, using reconfigurable UIMA pipelines to optimise
the performance of a chemical named entity recogniser. Batista-Navarro et al. [6] developed sophisticated ma-
chine learning-based UIMA pipelines that are trained via active learning to identify disease names in text while
Kontonatsios et al. [40] showed that UIMA pipelines can be used to automatically process content in different
languages and in different modalities (e.g. text and audio). Many researchers have used UIMA for textual clas-
sification purposes, for example in Sohn and Savova [81] where they used UIMA to classify the smoking status
of patients. They used text analysis components from Mayo’s cTAKES UIMA repository [78] (e.g. tokeniser,
sentence boundary detector, document classifier).

The UIMA architecture consists of several central elements:

1. The Common Analysis Structure (CAS) constitutes the common communication mechanism of UIMA
components. Essentially CAS is a data structure used by different components to read/write analysis
results and it is shared among the components of a pipeline.

2. Type System Model: A hierarchy of text data types. Objects stored in CAS are formally defined in
UIMA type systems while type systems are developed in Ecore (i.e. modelling language used in the
Eclipse Modelling Framework). UIMA only provides an abstract-level type system leaving the actual
implementation of specific text data types to third-part developers. An Annotation is a predefined UIMA
data type which contains reference pointers (e.g. offsets) to an input document and references to other
data types.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 9

D2.2 Text Modelling Extension

3. Abstract Interfaces: A set of standard method signatures defining different operations which users can
implement.

4. Behavioural Metadata: provides information of the input/output requirements of text mining compo-
nents and describes component dependencies. It includes the input text data types that a component can
process, text data types that a component generates, and any other pre-requisite components that need
to be executed before the component described in the Behavioural Metadata.

5. Processing Element Metadata: describes identification, configuration and behavioural information about
processing components and pipelines (analytics and flow controllers). This is related to the specification
of the Behavioral Metadata.

6. WSDL Service Descriptions: UIMA allows publication of pipelines as web services. WSDL describes
the abstract interfaces. The binding is defined to a concrete SOAP interface (i.e. a messaging protocol
allowing programs to run on different operating systems). This must be implemented by compliant
architectures.

Bank et al. [4] provided a comprehensive literature review of existing text modelling and processing frame-
work and concluded that UIMA is the most evolved and comprehensive framework available up to now. They
further highlighted that UIMA is an open-source Apache project which is compatible with different standards
including XMI, Ecore, XML, OCL or BPEL. Moreover, UIMA enables parallelisation and distribution of pro-
cessing resources and tt is also the only framework available that provides resource management and analysis
aware parameter handling.

However, UIMA presents several limitations according to the following:

• UIMA is not analysis aware of descriptor metadata as there is no applicable model for metadata inheri-
tance. However, metadata can be provided using Java annotations.

• there is a lack of definition of data resources and access structures for processing resources, document
and annotation model type systems.

• the UIMA type system is not comprehensive enough as it implements only abstract data types.
• aggregated workflows are just defined as collections of different analytics. Nested or cascaded work-

flows are not allowed on the descriptor level. Therefore, it becomes impossible to use document and
collection based analytics iteratively or processing pipelines cannot directly communicate.

• information cannot be accessed by other components if not specified by the architecture itself.

2.3 Type-Systems and Text-Types

There are many studies on UIMA, however, not many illustrate their UIMA text data type systems in detail.
A few studies which have described their type systems are Hahn et al. [29], Wu et al. [88],Kim et al. [38] and
Pon et al. [68].

Hahn et al. [29] presented an UIMA-based type system covering general-purpose text data types, including
morphological, syntactic and semantic types. The authors demonstrated that their UIMA-based type system
could annotate the entire cycle of text mining analysis with most of core types. They further provided an
extension to the bio-medical domain by modelling domain-specific text data types.

Likewise, Kim et al. [38] presented a text mining system, developed in UIMA, that classified the assertion type
of medical problems in clinical notes. Their UIMA-based type system included linguistic attributes, lexical,
syntactic, lexico-syntactic, and contextual types. Pon et al. [68] explored automatic identification of interesting

Page 10 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

news articles using the UIMA framework. Their designed data type system included topic relevancy features,
uniqueness measurements, source reputation, freshness, subjectivity, and polarity of news articles.

Wu et al. [88] defined a UIMA type system for clinical text mining that enables interoperability between struc-
tured and unstructured data generated in different clinical settings. The authors modelled several structured
data-types (i.e. documentid, metadata, demographic, sourcedata), utility types (i.e. pairs, pair, probability-
distribution), and text span types (i.e. paragraph, sentence, list, segment, document, segment). They also
defined syntactic types including different types of tokens (i.e. NumTokens, Newline-Tokens, Punctuation-
Tokens,Base-Tokens), Lemmas, POS-tags, and Treebank-Nodes. Moreover, they covered semantic types and
subtypes including a persons title, times and relations between annotations. They included deep semantic
types and a model of core CEMs and additionally the relation namespace, with both text relations (spanned)
and referential semantic (unspanned) relations.

Table 2 summarises the most common text data types developed by prior work using the UIMA framework.
We have further classified existing data types into the following three categories: a) General types denoting
the textual unit that text mining components annotate (i.e. Document level, Paragraph level, Sentence level,
Phrase level, and Token level), b) Syntactic types (e.g. pos, chunk, syntactic dependency tags) that annotate
syntactic properties of documents and c) Semantic types (e.g. polarity, named entities, events) which aim to
model information relevant to the meaning of documents.

In this project, we design and develop the Typhon text data type system in UIMA. We choose UIMA over
other existing text modelling and processing frameworks for the following reasons. Firstly, UIMA type systems
support data type inheritance. In practice this means that an existing UIMA type system can be readily extended
with new data types. Moreover, data type inheritance accelerates the development process of type systems
considering that children data types need to implement only those attributes that are not present in their parent
data types. Secondly, previous work showed that UIMA-based type systems can be used to annotate different
types of data (e.g. text, audio) [40]. Thus, our Typhon data type system can be extended in the future to other
data modalities apart from text. Thirdly, UIMA offers well-defined communication mechanisms (i.e. CAS)
to support interoperability of text mining components. This becomes important to the Typhon project since
standard pre-processing components of our text processing pipelines will use existing text mining libraries and
tools. Finally, UIMA implements a cluster controller1 to enable large-scale processing of big data collections
which is one of the core research objectives of our work.

1uima.apache.org/doc-uimaducc-whatitam.html

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 11

D2.2 Text Modelling Extension

Table 2: Existing Data Types
Types Examples/Details Authors

General Document language [88]
Paragraph A few sentences with a space after [88]
Sentence Three or more words usually ending with a full-

stop or punctuation
[88, 28]

Token Words, numbers, punctuation [88, 28]
Phrase "Throw in the towel" means to give up [77]

Syntactic N-gram One or more word split [60]
POS-tags Verb, nouns, adjectives [88]
Lemma Studies-Study [88]
Stem Studies-Studi [28]
Syntactic dependencies Alice Saw Bob=>(NOUN-VERB-NOUN) [28]

Semantic Named Entities Persons name title [88, 28]
Polarities Positive,negative, neutral [72]
Facts "The president is Trump" [81]
Events “Hit the car due to the faulty brakes” [81]
Domain Product-ID, Weather, Cars [88]
Negations No, not, neither, never, no one, nobody, none,

nor, nothing, nowhere
[81, 77]

Page 12 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

3 Typhon Text Data Type System

In this section, we describe the Typhon text data type system. The proposed type system was developed by
taking into consideration the different requirements of the Typhon use case partners found in deliverable D1.1
(project requirements are further discussed in section 5). The text data type system described here consists
of general purpose text data types that can be used by all use case partners across a wide range of different
applications and can be easily extended or edited in the future to accommodate new requirements that may
arise. Some use case partners, such as ALPHA Bank, had specific requirements for modelling information
extracted from text based on specialised data types that are only applicable to their underlying domain. We
have thus extended our general purpose Typhon type system by creating domain-specific text data types which
are discussed in section 5.

3.1 Overview of developed Type systems

Tables 3 to 6 summarise various information of the developed Typhon text data types, including a) the name
of the data type, b) whether the data type is applicable to the use case requirements provided by the four use
case partners of Typhon (i.e. VW, ALPHA, NEO, GMV), c) the text unit of annotation and d) the attributes of
the data type. As mentioned earlier in Section 2, the Typhon text data types are organised into three categories,
namely general, syntactic and semantic. General data types simply partition an input document into segments
(i.e, document, paragraph, sentence, phrase or word) which form the basis for further analysis by syntactic or
semantic components. Syntactic types model the syntactic structure of documents (e.g. identifying pos tags).
Syntactic types annotate words or phrases with syntactic information. Semantic types model different semantic
properties of an input document such as the document category (e.g. sports, news, politics etc), the polarity
of the document (e.g. positive/negative/neutral), the named entities occurring in the document (e.g. named of
organisations, locations) etc. Semantic types annotate different textual units, e.g. named entities annotate words
or phrases, events and relations annotate sentences, topics and categories are document-level data types while
the co-reference type is a multi-level annotation considering that co-referring pairs (e.g. Barack Obama/He)
may span across the same sentence or paragraph or across multiple sentences or paragraphs.

The Typhon data types are organised into a hierarchical system which is illustrated in Figure 3. Top and
Annotation are abstract-level data types defined by the UIMA framework. Top is an empty data type and it is
simply used to denote the top level of the hierarchy while the Annotation data type defines reference pointers
to the input document (i.e. begin and end offsets). All Typhon data types extend the Annotation type in order to
inherit the reference pointer attributes. It should further be noted that a data type can be used as an attribute in
a second data type. As an example, the Dependency Parsing, which links POS tags into syntactic relationships,
contains as an attribute a list of constituent POS data types.

Table 18 in AppendixA illustrates different text processing pipelines that are used to generate the Typhon text
data types. Moreover, the table shows the structure of the text data types stored in an ElasticSearch back-end.

3.1.1 General Data Types

In the following list, we describe our justification for modelling different text data types. These include re-
quirements from the use case partners and how they can support structuring and managing textual data.

1. Document

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 13

D2.2 Text Modelling Extension

Figure 3: Type System

Table 3: Typhon General-purpose Text Data Types
Data Type Name VW ALPHA NEO GMV Text unit Attributes
Document x x x x Document + begin: Int

+ end: Int
+ language: String
+ encoding: String
+ sourceFile: URI

Paragraph x x x x Paragraph + begin: Int
+ end: Int

Sentence x x x x Sentence + begin: Int
+ end: Int
+ sentenceValue: String

Token x x x x Word + begin: Int
+ end: Int
+ tokenValue: String

Phrase x x x x Phrase + begin: Int
+ end: Int
+ phraseValue: String

Page 14 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Table 4: Typhon Syntactic Text Data Types
Data Type
Name

VW ALPHA NEO GMV Text
unit

Attributes

N-gram x x x x Word
/Phrase

+ begin: Int
+ end: Int
+ bigramValue: List<2>

(Token, Lemma or Stem)
+ trigramValue: List<3>

(Token, Lemma or Stem)
POS-Tags x x x x Word + begin: Int

+ end: Int
+ posValue: String

Lemma x x x x Word + begin: Int
+ end: Int
+ lemmaValue: String

Dependency
parsing

x x x x Word + begin: Int
+ end: Int
+ sourceNE: NamedEntity
+ targetNE: NamedEntity
+ label: String

Chunking x x x x Word + begin: Int
+ end: Int
+ constituentTokens: List<Token>
+ constituentPOS: List<POS>
+ label: String

Stem x x x x Word + begin: Int
+ end: Int
+ stemValue: String

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 15

D2.2 Text Modelling Extension

Table 5: Typhon Semantic Text Data Types
Data Type
Name

VW ALPHA NEO GMV Text unit Attributes

Sentiment
Analysis

x x x x Document
/Sentence

+ begin: Int
+ end: Int
+ polarityLabel: String
+ polarityScore: Float

Co-
reference

x x x x Multi-
level
annotation

+ begin: Int
+ end: Int
+ antecedent: List<Token>
+ anaphor: List<Token>

Relations x x x x Sentence + begin: Int
+ end: Int
+ sourceNE: NamedEntity
+ targetNE: NamedEntity
+ label: String

Categories x x x x Word
/Docu-
ment

+ begin: Int
+ end: Int
+ categoryLabel: String
+ categoryScore: Float

Topics x x x x Document + begin: Int
+ end: Int
+ descriptiveWords: List<str>
+ wordCoefficients: List<Float>

Terms x x x x Word
/Phrase

+ begin: Int
+ end: Int
+ constituentTokens: List<Token>
+ weight: List<Float>

Event x x Sentence + begin: Int
+ end: Int
+ triger: token
+ arguments: List<NamedEntity>
+ theme: String

Page 16 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Table 6: Typhon Named Entities Text Data Types
Data Type
Name

VW ALPHA NEO GMV Text unit Attributes

Name x x x x Word/Phrase + begin: Int
+ end: Int
+ nameValue: String

Location x x x x Word/Phrase + begin: Int
+ end: Int
+ locationValue: String

Product x Word/Phrase + begin: Int
+ end: Int
+ productValue: String

Time pe-
riod

x x Word/Phrase + begin: Int
+ end: Int
+ timeValue: String
+ date: String
+ day: String
+ month: String
+ year: String

Organisation x x x x Word/Phrase + begin: Int
+ end: Int
+ organisationValue: String

Service x x x x Word/Phrase + begin: Int
+ end: Int
+ serviceValue: String

ID Entity x x x x Word/Phrase + begin: Int
+ end: Int
+ IDEntityValue: String

Quantity x x x x Word/Phrase + begin: Int
+ end: Int
+ quantityValue : Int

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 17

D2.2 Text Modelling Extension

The document data type consists of the following attributes: language (string) which stores the language
of the document, encoding (string) which denotes the encoding format of the document (e.g. UTF-8),
sourceFile (URI) which is the location, e.g. file path, of the document) where the document is actually
stored, begin (integer) and end (integer) which are reference pointers inherited from the Annotation data
type.

Language is an essential attribute for this project considering that use case partners require analysing
textual data in different languages (e.g. German, Greek, Spanish, English). The language attribute is also
important since the vast majority of text mining components, such as POS-taggers, sentiment analysers,
dependency parsers etc., are language-dependent. In practice this means that a language-dependent
component needs to identify the language of the input document (by examining the value of the lan-
guage attribute) in order to load the correct configurations for the underlying language of the document.
The encoding is also important because data can be stored in different encoding formats and thus the
text mining processing components need to know the correct encoding format of an input document.
Specifying the encoding format allows other components to function properly (e.g. identifying the text
characters correctly). The last feature is the data size. Data-size is fairly important and can be used for
data verification purposes and for partitioning a large file into smaller partitions.

2. Paragraph
Paragraph data types have been previously used in various text mining applications. As an example,
Jaruskulchai et al., [34] presented an automatic summarisation system that used the first sentence of
each paragraph to summarise an input document. Paragraph data types have also been used for topic
detection and opinion summarisation [43].

The paragraph data-type has the following attributes: begin (integer - beginning of the paragraph), end
(integer - end of the paragraph), and paragraphValue (string - actual textual content of the paragraph).

3. Sentence
A sentence data type marks the character offsets of sentences in a given documents. It is an essential
data type for text classification purposes including sentiment analysis. Similar to the paragraphs, it has
also been found useful in topic detection [43]. There are various way to extract sentences. Punctuation
(i.e. question mark or exclamation mark) could be used for sentence segmentation, however this could
be challenging in some languages [75]. In Spanish for example, you could use punctuation to confirm a
statement such as ¿No? this is equivalent to “am I right? ". The end of the sentence will be at the second
question mark not the first. However in English, usually question mark or exclamation marks indicate
the end of a sentence. Additionally, due to encoding issues, there can be hidden characters such as ‘\n’
and ‘Â’ which split the sentence, these may cause issues if not dealt with in a correct manner. Lastly,
some users may not use punctuation correctly and may not end sentences with a full-stop or punctuation,
this is most common in reviews and informal text [80]. To address these issues the sentence type should
take into consideration the source of the data and the language.

The sentence data-type similar to the paragraph data type consists of the attributes: begin (integer -
beginning of the sentence), end (integer - end of the sentence), and sentenceValue (string - textual
content of the sentence).

4. Token
The token is the most common data type it is used by the vast majority of text mining components
(e.g. stemmer, n-grams, term extraction, POS taggers etc.) [15, 77, 7]. Token data types denote the
boundaries of words within a document. There are different ways to tokenise a document: splitting
at whitespace or splitting a document into its constituent words. In this project, we experiment with

Page 18 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

2 different tokenisers: Standard tokeniser which is our own Java-based implementation which simply
splits words according to white spaces and the StringTokenizer class from the java util package2. A
full report of the results are included in section 6. In summary, we found that our tokeniser led to more
accurate results when compared to the StringTokenizer.

Tokens can be weighted by different weighting schemes, such as the term frequency (TF) and the term
frequency–inverse document frequency (TF-IDF). TF and TF-IDF assign a weight to each token which
denotes the importance of that token in a document. TF and TF-IDF have been interchangeably used in
document classification approaches. Haddi et al. [26] explored the differences between Term Frequency,
TF-IDF, and Feature Presence (FP) (i.e. number of tokens present in a document). They found that
document classification models using TF-IDF led to a superior performance.

Tokens are important for this project as GMV needs fast text indexing and keyword search. Token data
types usually form the basis of larger data types such as keywords. Moreover, all four use case partners
require named entities which consist of a sequence of tokens, e.g. multi-word phrases. A token data type
contains similar attributes to both the paragraph and sentence: begin (integer - beginning of the token),
end (integer - end of the token), and tokenValue (string - textual content of token).

5. Phrase/idioms
Many languages have phrases and idioms which refer to a certain meaning. For example, the phrase “It
is raining cats and dogs" refers to heavy rain. If this phrase is not taken as a whole it could change the
meaning that the sentence is trying to convey. Obviously, phrases in one language could not have the
same meaning in another. Therefore, language should be identified before detecting phrase data types.
Usually phrase and idiom extraction are applied to informal textual data such as feedback. Phrases can
be used in sentiment analysis or topic detection [87]. Phrases can be extracted from textual data using a
manually constructed lexicon.

Each phrase or idiom consists of the attributes: begin/end reference pointer, and phraseValue(string -
textual content of that phrase\idiom).

3.1.2 Syntactic Data Types

Syntactic data types are important for modelling the syntactic structure of an input document. Moreover,
syntactic data types are used as constituent attributes in larger semantic text data types. The following list
present the syntactic data types of our type system.

1. N-gram
N-grams are useful data types and can be used for many purposes. They can be used as input to ma-
chine learning classifiers that automatically detect different semantic types (e.g. polarity, category of
a document). N-grams can also be used for identifying multi-word expressions such as “New York".
Some existing n-gram extraction tools, such as the in-built text processing functionalities of the WEKA
platform, consider every possible combination of tokens as valid n-grams. An example consider the fol-
lowing sentence “I like this book", if we required bigrams (i.e. sequence of two tokens), the bigrams
extracted by the Weka library would be: “I like", “like this", “this book", “I this", “I book", “like book".
In another more simplified version, it could be just: “I like" and “this book". N-grams are required for
some named entities such as detecting the full person’s name: first name and surname.

N-grams can be directly computed from tokens, saving computational time since the document collec-
tion does not have to be loaded into memory again. They can also be derived from the base forms of

2https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 19

D2.2 Text Modelling Extension

tokens such as lemmas or stems. The N-gram data type consists of the following attributes: begin/end
reference pointer, and bigramValue and trigramValue (List - constituent tokens of the n-gram).

2. Part-Of-Speech (POS)-Tags
A part-of-Speech tagger assigns part-of-speech tags (i.e. noun, verb, adjective) to each word. POS-
tags provide useful information to semantic analysis components such as text classification or sentiment
analysis and they are used as constituent attributes in larger data types (e.g. dependency parsing type).
A standard set of POS tags consists of the following: adjective (ADJ), adposition(ADP), adverb (ADV),
conjunction (CONJ), determiner (DET) , noun (NOUN) , numeral (NUM) , particle (PRT), pronoun
(PRON) , verb (VERB), punctuation marks (.), and other (X). There are many libraries that provide
POS-tagging functionalities (e.g. LingPipe, Stanford, LBJ, FastTag, and OpenNLP) [35, 48, 92]. Some
libraries include more refined categories of POS tags such as the Penn treebank library. The verb in this
library has three forms: base form (VB), past tense (VBD) or present participle (VBG). In this project,
we will implement POS tagging pipelines using the Standford CorNLP library due to its capability to
process different languages (i.e. Arabic, Chinese, German, French, Spanish) which is required in this
project [48].

A POS data type contains the following attributes: begin/end reference pointer, posValue (string the
POS tag).

3. Lemma and Stem
Lemmatisation and Stemming aim at identifying normalised forms (root) of words. The difference
between lemmatisation and stemming is that a stem (output of stemming) might not be an actual word
but a lemma (output of lemmatisation) is an language word. As an example, consider the word ‘Studies’,
its stem form is ‘Studi’ and its lemma is ‘Study’. Stemming is the most widely applied morphological
technique for information retrieval [41]. Stemming benefits include reducing the total number of distinct
index entries and query expansion by bringing word variants and derivations together [41].

Stemming is known to be challenging for languages that present high variability of verbs (such as
Spanish, Italian, Catalan, Slovenians) while the poor performance of stemming component may lead to
loss of information and the resulting annotations may not be refined enough [83]. A second limitation
of stemming is that words that are semantically different may be incorrectly grouped under the same
stem cluster, for instance, in Spanish estafa (swindle) and estafeta (post office) are both grouped under
the stem cluster ‘estaf’. On the other hand, lemmatisation correctly groups these two semantically
different words under two different lemma clusters: estafa and estafeta. Another issue with stemming
is that it could give different stems for the same verb. As an example, the word resolver (to resolve)
and resuelto (resolved) could be ‘resol’ and ‘resuel’. The only valid lemma here should be resolver.
Lemmatisation was also found more beneficial (i.e. better performance) in a comparison study that
evaluated lemmatisation against stemming for the Finish language [41]. Other studies reported that
lemmatisation requires substantial computational resources when compared to stemming and they thus
preferred stemming over lemmatisation to derive the root form of words [14, 3]. Also, stemming is a
dictionary-independent method which can deal with unknown words. On the other hand, lemmatisation
requires a large dictionary which usually is not available for any language or domain.

Stemming and lemmatisation can be beneficial for this project due to the partners’ requirement for
fast keyword search like GMV, spell checking required by VW, and sentiment analysis required by
both GMV and VW. Stemming allows us to reduce running time (i.e. faster searches by reducing the
variation of word matches using the root form) and makes classification or topic detection more accurate.
In this project, we use both stemming and lemmatisation. Lemmatisation is generally preferred over
stemming as it yields more accurate results. However, stemming is faster than lemmatisation while

Page 20 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

stemming tools are available for a larger number of languages considering that stemming is a dictionary-
independent method. We have experimented with the following stemming tools: EnglishStemmer3 and
PorterStemmer from the tartarus snowball package4. We found that the EnglishStemmer led to a better
performance in terms of accuracy and running-time. More details of these results will be presented in
section 6.

A stem data type consists of the following attributes: begin/end reference pointer and stemValue (string
- stem form of word). Likewise, the lemma data type consists of: begin/end reference pointer and
lemmaValue (string - stem form of word).

4. Dependency parsing
A dependency parser analyses the grammatical and syntactical structure of a sentence and it identifies
syntactic relationships between words. Dependency parsing focuses on relationships between words
while the phrase structure focuses on identifying phrases and their recursive structure. Mcdonald et
al. [51] presented a collection of treebanks with syntactic dependencies for several languages: German,
English, Swedish, Spanish, French and Korean. They made this universal treebank freely available.
Dependency parsing is a challenging tasks due to language ambiguities. For example, consider the
following sentence "Visiting relatives can cause problems". Here, a dependency parser identifies two
possible syntactic structures where "visiting" can either be an adjective or a verb in the sentence.

Identifying relationships between words may facilitate more meaningful keyword-based search as multi-
word queries will only retrieve documents where the query words have a syntactic dependency. For
our project, we chose to use the Stanford Parser due to its capability to handle multiple languages
(i.e. Arabic, Chinese, German, French, Spanish).

A dependency parsing data type consists of the attributes: begin/end reference pointer, label (string -
label of syntactic relationship between two tokens), sourceNE (Token - the source token of the syntactic
relationship) and targetNE (Token - the target token of the syntactic relationship).

5. Chunking

Chunking also known as shallow parsing produces data types which are similar to n-grams. However,
chunking is implemented on top of POS tags. Chunking takes as input POS tags and clusters the pos
tags into larger syntactic units (e.g. noun/verb phrases). There are standardised sets of tags which are
similar to POS tags, for instance: Noun Phrase(NP) and Verb Phrase (VP). There are certain syntactic
rules for chunking. For example, the Noun Phrase (NP) chunk can be formed when the chunker finds an
optional determiner followed by any number of adjectives and then a noun. Chunking is implemented by
different publicly available tools such as Spacy (python) or TextBlob [71]. NLTK also provides regular
expressions for generating chunks [71]. Chunking has certain advantages over dependency parsing
according to Osenova et al., [61]. Dependency parsing is not very robust or cheap to compute while
chunking is faster and may produce more reliable results.

Chunking is useful for our project as it can be used as a pre-processing component in named entity
recognition pipelines. Osenova et al., [61] showed that chunking improves upon the performance of a
named entity recogniser considering that the resulting syntactic units produced by a chunker can be used
by a named entity recogniser for further processing. In this project, we will use the OpenNLP library 5,
for developing chunking components. A chunk data type consists of the following attributes: begin/end

3http://snowball.tartarus.org/algorithms/english/stemmer.html
4http://snowball.tartarus.org/algorithms/porter/stemmer.html
5http://opennlp.apache.org

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 21

D2.2 Text Modelling Extension

reference pointer, constituentTokens (List<Token> - tokens that form a chunk unit), constituentPOS
(List<POS> - pos tags of the constituent tokens of a chunk unit), label (string - the label of the chunk
unit).

3.1.3 Semantic Data Types

Semantic data types are related to the meaning of text. Extracting semantic data types can be realised using
either rule-based approaches (e.g. regular expressions) or machine learning-based methods. In the list below,
we outline the semantic data types we created for this project.

1. Sentiment analysis
Sentiment analysis is used to analyse opinions expressed in textual content. It is popular nowadays
due to the vast amount of on-line textual sources (e.g. tweets, blog/facebook posts, product reviews).
Companies are using sentiment analysis to inform business decisions [47] while political parties often
use sentiment analysis to better understand citizens’ opinions and to subsequently aid more informed
political campaigns [55]. Sentiment analysis has been previously used across a wide range of different
textual sources relevant to movies, products, tourism, education [2], sports [90], and politics [55]. Some
of these domains require sentiment analysis results in real-time. For instance, sentiment analysis can be
used by a University lecturer to obtain instant student feedback [2]. Organisations and businesses could
also be interested in analysing customers opinions to address issues in a timely manner [63].

A sentiment analysis pipeline requires a number of pre-processing components, including tokenisation,
weighting tokens using either the TF or the TF-IDF scheme, stemming, n-gram extraction and POS-
tagging. In this project, we develop and evaluate sentiment analysis pipelines in UIMA which are
discussed in detail in in section 6.

Sentiment analysis is important for our use case partners: VW, GMV and Alpha Bank have customer
reviews and customer feedback collections and they wish to better understand opinions expressed in
these collections.

A sentiment analysis data type has the following attributes: begin/end reference pointer, polarityLabel
(string - the polarity tag), and polarityScore (Float - the polarity score).

2. Co-reference resolution
Co-reference resolution aims to identify two or more words or phrases that refer to the same entity
(e.g. person/organisation/location). An example for this is “Sarah said she will have it", ‘Sarah’ and
‘she’ refer to the same person. Co-reference resolution has been used for question answering [54],
automatic summarisation [22] and named entity extraction [11]. There are many tools that implement
co-reference resolution such as Stanford CoreNLP and LingPipe [58]. Standford CoreNLP is more
common and widely used among the text mining community [45]. It has also been adapted for different
languages. Three different co-reference resolution systems are available in Stanford CoreNLP: a fast
rule-based deterministic method, a machine learning-based and a neural network-based model. The
neural network-based method have been previously shown to achieve a superior performance [25].

Co-reference resolution is important as it can improve upon the accuracy of named entity identification
by finding the co-referring words/entities. For this project Stanford CoreNLP will be used due to its
superior performance reported in the literature[49].

A Co-reference resolution data type has the following attributes: begin/end reference pointer, antecedent
(List<Token> - the main entity referred in text), anaphora (List<Token> - a word or a multi-word phrase
that refers to the antecedent).

Page 22 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

3. Relation
Detecting relations between named entities is an important task in text processing. These relations could
link instances of the same named entity or instances of different named entities. Examples of relations
are: Organisation located in Place, Person employed by Organisation, Organisation part of another
Organisation, and Person married to Person. Automatic identification of relations extracts meaningful
information from text which can subsequently be used to aid more efficient search. There are sev-
eral methods for extracting semantic relations: hand-built patterns, bootstrapping methods, supervised
methods, distant supervision, and unsupervised methods [37]. For our project, we will use the Stanford
Relation Extractor which is part of the Stanford coreNLP library.

The relation data type consists of: begin/end reference pointer, sourceNE (NamedEntity - the source
named entity participating in the relation), targetNE (NamedEntity - the target named entity participating
in the relation), and label (string - the name of the relation).

4. Category
Automatic document categorisation is a general case of semantic analysis that aims to assign a rele-
vant category (from a predefined list of categories) to an input document. An example of document
categorisation is: I wonder who will win the world cup. This would be classified with the category
‘Sport’.

Automatic document categorisation will be used in this project to group documents according to their
common category. After assigning categories to documents, a user of the Typhon platform will be able
to form faceted queries in order to retrieve documents relevant to a pre-specified category. We will
implement automatic document categorisation pipelines using a combination of machine learning and
rule-based methods to improve upon the performance of our pipelines.

A category data type has: begin/end reference pointer, categoryLabel(string - name of the category)
and categoryScore (double - a confidence value that determines how likely it is that a document belongs
to a specific category).

5. Topics (by unsupervised topic modelling)
Topic modelling is an unsupervised method, i.e. it does not require hand-annotated examples for training
the machine learning model, that aims to identify topics within a collection of documents. A topic is
described by a set of descriptive keywords that can be used as indexing terms for efficient topic-based
search. In topic modelling a cluster of descriptive keywords is created for each topic while multiple
topics are assigned to every document. Topic modelling has been previously shown to improve the
accuracy of automatic document categorisation by grouping similar words together in topics instead
of using each word as a feature [67]. Moreover, topic modelling has been used for developing topic-
based search engines where users search a database using topic-based queries instead of keyword-based
queries [69].

Topic modelling algorithms include: 1) Latent Dirichlet Allocation (LDA) [8] 2) Latent Semantic Anal-
ysis, and 3) Non-Negative Matrix Factorization (NMF) [18]. In this project we will use the MAL-
LET [21] library which offers an efficient implementation of the LDA algorithm.

A topic includes the following attributes: begin/end reference pointer, descriptiveKeywords
(List<String> - a list of descriptive keywords for that topic) and wordCoefficients (List<Float> - a co-
efficient score assigned to each descriptive keyword denoting the importance of that keyword to the
underlying topic).

6. Terms
Term extraction is a subtask of information extraction that automatically extracts terms from a collection

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 23

D2.2 Text Modelling Extension

of documents. Term extraction becomes important in domains such as medicine or law where documents
consist of a substantially large number of domain-specific terms.

There are three approaches used in term extraction: linguistic, statistical, or hybrid [64]. The linguistic
approach identifies word combinations matching certain morphological or syntactical patterns. Con-
sequently, dependency parsers, POS taggers and morphological analysers are used as pre-processing
components in a term extraction pipeline. Terms are then identified using different pattern matching
techniques. A limitation to this method is that it is language-dependent considering that terms appear
in different syntactic templates across different languages [64]. The statistical method searches for re-
peated sequences of lexical items. Unlike the linguistic approach, statistical-based methods are language
independent. Finally, a hybrid term extraction method combines both a linguistic and a statistical model
to more accurately identify terms.

Term extraction is important for this project as automatically extracted terms will be used as indexing-
keywords in order to provide a richer set of possible queries that a user can perform. For our project, we
will use a language-independent statistical-based method considering that the use case partners require
analysing documents in different languages.

A term data type consists of: begin/end reference pointer, constituentTokens (List<Token> - a sequence
of tokens that are the constituent parts of the term) and weight (Float - weight value which shows the
importance of a term in a document).

7. Event
An event is an occurrence of a textual fact. An event is centred around a trigger word which denotes
the presence of an event in a document. In addition to the trigger, an event consists of arguments corre-
sponding to the entities participating in the event. Event identification is a challenging text mining task
which typically involves three sub-tasks: determining the span of text identifying an event, determin-
ing the event trigger, and determining the participants of the event. There are three ways of detecting an
event from text: data-driven method which relies upon machine learning, knowledge-driven which uses
patterns, rules, and expert knowledge and a hybrid approach which is combination of data-driven and
knowledge-driven methods [52]. The data-driven method usually requires a large amount of manually
annotated data for training a machine learning model but it can be readily applied across different do-
mains without using specialised domain knowledge or expertise. On the other hand, knowledge-based
methods require a small amount of data but they rely upon domain specific pattern matching rules which
are manually developed.

In the context of this project, we will develop event extraction pipelines using the OpenNLP6 library.
Events are useful for the use case partners considering that VW requires identifying events relevant to
car faults and Neo Odos needs to better understand when and why heavy traffic may occur by analysing
automatically extracted events.

An event data type consists of the following attributes: begin/end reference pointer, trigger (Token -
the token which triggers the even), arguments (List<NamedEntity> - two or more named entities that
participate in the event) and theme (string - the type of the event).

8. Named Entities
Named Entity Recognition (NER) assigns predefined semantic categories (e.g. person names, organ-
isations, locations) to a sequence of tokens. NER has been previously used for developing efficient
semantic search engines [1, 27]. Additionally, NER can improve upon the performance of a search en-
gine by disambiguating the underlying query keywords, for example, searching for Apple the company

6https://opennlp.apache.org/

Page 24 Version 1.1
Confidentiality: Public Distribution

27 December 2018

https://opennlp.apache.org/

D2.2 Text Modelling Extension

it will dismiss results of Apple the fruit. NER can be implemented using linguistic-based techniques
as well as statistical models (i.e. machine learning). Linguistic-based methods use existing lexicons
and local grammar (i.e. patterns to match a named entity) [91]. Statistical-based methods use machine
learning approaches and generally require a large amount of manually annotated training data [91].
To address this problem, semi-supervised methods can be used which require a significantly smaller
amount of training data to accurately identify named entities in text. Hybrid methods are a combination
of statistical and rule-based approaches.

A named entity can be general and fit any domain (e.g. person names) or it can be doman-specific
(e.g. model of a car). The different types of named entities have to be selected according to the purpose
and the requirements of each application scenario. In our project, we will use the following named
entities:

(a) Person name: This can be either a customer’s name, employee’s name, or any person’s name. A
person name is usually extracted using regular expressions [56]. This is due to the fact that person
names usually start with capital letters. However, such regular expressions may not by applicable
to any language (i.e. in Arabic person names do not require capitalisation). Some applications
require identifying full name (i.e. employee name) while others only the first name of a person
(i.e. customer service help).
A person named entity type includes the following attributes: begin/end reference pointer, and
nameValue (string - the actual value of the person’s name).

(b) Location: It is one of the most common named entity data types in addition to person and or-
ganisation names [56]. A location named entity may refer to the location of an organisation,
customer’s address, or location of a car collusion. The location can be expressed in natural lan-
guage text or in other formats such as GPS coordinates, latitude and longitude. A location named
entity can be further divided into subtypes like country, county or state, city, street or postcode.
Location identification can be performed using a dictionary of existing location names or by using
readily available pre-trained machine learning models such as the Stanford Named Entity Recog-
nizer (NER)7. Stanford NER is based on linear chain Conditional Random Field (CRF) sequence
models (i.e. machine learning) and can be adapted to fit any domain, application or language [19].
The location attributes include: begin/end reference pointer, and locationValue (string - the actual
value of the location name). There could be subtype String attributes here which include country,
county, city or postcode.

(c) Organisation: Refer to names of companies, institutions, government organisations. Some exam-
ples include: Apple (company), Edge Hill University (institution), or National Institute for Health
and Care Excellence (government organisation). It is important to detect the organisation named
when dealing with multiple domains such as in our project considering that organisation names
can help organise data into separate datasets for different purposes. The organisation attributes
include: begin/end reference pointer, and organisationValue (string - the actual value of the organ-
isation name).

(d) Product: Identifying product names in textual content is important for use case partners (e.g. VW)
that deal with a number of different products and wish to efficiently search a text database using
the name of a product. A product name can be general or specific and it can be accompanied by an
ID or sub-type of a product. As an example consider the product car. A car has a model and make
and a specific ID. Identifying product names has been a main spotlight for sentiment analysis as

7https://nlp.stanford.edu/static/software/CRF-NER.shtml

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 25

https://nlp.stanford.edu/static/software/CRF-NER.shtml

D2.2 Text Modelling Extension

customer feedback is essential nowadays for both customers and producers. Identifying product
names is one of the steps towards understanding customers’ feedback (i.e. a requirement of VW).
The product data type incudes: begin/end reference pointer, and productValue (string - the actual
value of the product name).

(e) Service: Identifying service names is important for financial institutions-ALPHA bank (loan ser-
vice) or a car vendors-VW (customer repair service). A service name is less common than other
named entities. However, in this project service name identification becomes essential considering
that all use case partners provide different type of services to their customers.
Similarly to the previously described named entities, a service data type consists of: begin/end
reference pointer, and serviceValue (string - the actual value of the service name).

(f) Time period: It is a another less common data type, however not less important when compared
to the above-mentioned named entity types. Time mentions can be a date: year, month, day, but
it can also be the hour of a day: hour, minute, second. Time mentions can appear in either a
numerical or in a character format. Time mentions can be useful for many applications such as
identifying the date of purchase, date of joining a service or company. In our project, Neo Odos
is interested in identifying time mentions in order to automatically detect the date and time of the
day when heavy traffic occurs in motorways. Similarly VW may need to identify the time of a car
collusion to report an incident. GMV may also require time identification for specifying the time
of a purchase.
The time attributes include: begin/end reference pointer, timeValue (string the actual value of a
time mention), date (Date - the date of a time mention), day (string - the day of a time mention),
month (string - the month of a time mention), year (string - the year of a time mention).

(g) ID Entity: This data type identifies all the records that are unique. Examples include: customer
or employee IDs. This is similar to the Uniqueidentifier data type in SQL. The attributes include:
begin/end reference pointer, and IDEntityValue (string - the actual value of the ID entity name).

(h) Quantity: This a very generalised data type that represents any quantity value which is an integer.
It can be used for many reasons such as quantity of products, the amount of money in one’s bank
account, or a total sum of products purchased. Its attributes include: begin/end reference pointer,
and quantityValue (int - the actual value of the Quantity type).

In addition to general data types which are described in this section, there exist specialised data types which
are relevant to only one domain or use case partner. Specialised data types are described in section 5.

Page 26 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

4 Extensibility and Flexibility of Typhon Type System

UIMA type systems are flexible and readily extensible with additional data types[4]. UIMA type systems
structure data types in a hierarchy governed by is-a relationships between types and subtypes. Therefore, new
data types can extend existing data types without having to re-model attributes that already exist in inherited
types. This is important for a project where new requirements have to be integrated frequently. The flexibility
of the UIMA framework stems from the fact that the text processing components can be freely combined into
text processing workflows using a shared type system of common data types.

The TyphonML type system of textual data needs to be extensible for several reasons. Possible extra text
processing requirements from Typhon use case partners can be added easily in the future, without re-creating a
new type system from scratch. Other applications or users may require new types, to cover domains other than
those of the use case partners, such as health, sports or education.

According to requirement D5 for WP2, as shown in table 16 in section 8, this work consists a pilot for adding
support for other types of data, such as images and video, to Typhon polystores. To support different data
modalities, we would need to analyse processing requirements, similarly to the analysis of text processing
requirements, and develop a type system that allows for stand-off annotations, accordingly. A major part of the
type system presented in section 3 would be reusable for other modalities. For example, the classification data
type can be extended to different data modalities, to cover object recognition in images, voice identification in
audio data, etc. Data types specific to text, such as sentences and tokens, will have to be replaced by data types
that correspond to parts of a data instance of the target modality, e.g. frames and pixels in videos.

In the next section, we discuss extensions of the type system to cover specific requirements of each Typhon
use case partner.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 27

D2.2 Text Modelling Extension

Table 7: Data types specific to the use case of Alpha Bank
Type Text unit Attributes

Account
number

Word Account Number
+ begin: Int
+ end: Int
+ accountNumber: str

Customer
Unique
Number

Word Customer Unique Number
+ begin: Int
+ end: Int
+ customerUniqueNumber: str

Credit
Amount

Word Credit Amount
+ begin: Int
+ end: Int
+ creditAmount: Int

debit
Amount

Word Debit amount
+ begin: Int
+ end: Int
+ debitAmount: Int

Transaction
Amount

Word Transaction Amount
+ begin: Int
+ end: Int
+ transactionAmount: Int

Date
transaction
valid
in bank

Word Date transaction valid in bank
+ begin: Int
+ end: Int
+ dateTransactionValid: str

Card
Number

Word Card Number: Int
+ begin: Int
+ end: Int
+ cardNumber: Int

5 Use cases

In this section, we present different use cases provided by the Typhon use case partners, requiring the design
and implementation of bespoke text data types to cover domain-specific requirements. Such specialised data
types extend the general purpose Typhon text data type system presented in section 3. More specifically,
Alpha bank requires modelling text data types relevant to bank customers while Volkswagen and GMV require
identifying specialised products in their textual datasets. They also need to analyse customer feedback relevant
to their products. Furthermore, Nea Odos requires identifying specialised named entities relevant to weather
and traffic conditions.

Page 28 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Figure 4: Alpha type-system

5.1 Alpha Bank

Alpha bank provided different instances of unstructured text that need to be structured using certain rules.
Their text collections consist of customer letters requesting services such as taking loans, or opening\closing
accounts and customer complaints or feedback. Alpha bank requested several specialised data types which are
outlined in Table 5. Based upon this, we have extended our general purpose type system with these specialised
data types. Figure 4 illustrates our extensions to the general purpose type system. Boxes in black boundaries
represent general purpose data types, while boxes in coloured boundaries (yellow,green and blue) show the new
data types created for this use case. Account number, Customer unique number, and Card number all extend
the general purpose data type ID. Additionally, the Credit amount, Debit amount and Transaction amount
inherit the general purpose data type Quantity. Lastly, we included a Date transaction valid in bank type
which is a sub-type of the Time data type. These specialised data types can be used by any financial institution,
if required in the future.

5.2 Volkswagen

VW required data types which are specific to their domain. Figure 5 and Table 8 illustrate these data types
which extend our general purpose type system. The VW-specific data types include the Car type which extends
the Product type and it consists of a car make and car model attributes.

VW also required modelling a Sentiment Analysis data type. More specifically, VW provided a sample dataset
consisting of customer feedback relevant to their car rentals services. The customer feedback dataset is written
in German. Based on this, we developed a Sentiment Analysis data type with attributes: begin/end refer-
ence pointer, polarityLabel (String - denotes the polarity label of a document, i.e. positive/neutral,negative)

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 29

D2.2 Text Modelling Extension

Table 8: Data types specific to the use case of VW
Type Text unit Attributes

Car Word/phrase Car
+ begin: Int
+ end: Int
+ Car make: str
+ Car model

Car
Year

Word Car Year
+ begin: Int
+ end: Int
+ Car Year: str

Date of
Purchase

Word/phrase Date of Purchase
+ begin: Int
+ end: Int
+ Date of Purchase: str

Date of
Guarantee

Word/phrase Date of Gurantee
+ begin: Int
+ end: Int
+ Date of Gurantee: str

Sentiment
Analysis

Word Polarity
+ begin: Int
+ end: Int
+ polarity: str
+ polarityScore: Float

and polarityScore (Float - a confidence value which shows how likely it is for a document to belong to its
corresponding polarity label).

In addition to the Car and Sentiment Analysis data types, we created three new sub-type extensions, namely
Car Year, Date of Purchase and Date of Guarantee, of the general purpose data type Time. The Car Year shows
the build date of a particular car, the Date of Purchase indicates the date when a customer bought a car and the
Date of Guarantee is used to identify the types of car services that are available to a customer according to the
guarantee start date.

5.3 GMV

Regarding GMV, we identified several domain-specific data types which are presented in Table 9 and in fig-
ure 6. The first domain-specific data type is relevant to GMV Products. A GMV Products consists of the
following attributes: begin/end reference pointer, productSector (String - GMV Product sectors include: Aero-
nautics, Banking And Insurance, Cybersecurity, Defense And Security, Gnss, Healthcare, ICT For Business,
Intelligent Transportation Systems, Public Administrations, Space, Telecommunications.) and productMake
(String - actual name of a product).

Similarly to VW, GMV requires a Sentiment Analysis data type to analyse their product reviews datasets and to
subsequently ensure the quality of their products and to better understand feedback received by their customers.

Page 30 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Figure 5: VW type-system

Considering that GMV products span across a wide range of different sectors, our sentiment analysis pipelines
may have to be adapted to the terminology used in each specific domain/sector in order to more accurately
analyse opinions expressed in text.

The last specialised data type that we developed is the Date of Purchase which extended the general purpose
data type Time. This data type is required by GMV for monitoring their sales.

5.4 Nea Odos

Nea Odos requires modelling several specialised textual data types which are illustrated in Figure 7 and in
Table 10. More specifically, they need to model traffic and weather conditions, and possible car collusion
incidents to better manage the operation of the toll lanes. Time data types are also important for Nea Odos for
the following reasons. Firstly, they need to identify the date and time when increased traffic appears. Secondly
the time data type will allow Nea Odos to notify drivers via the VMSs (Variable Message Signs), which are
installed in key points along their motorways, when extreme weather conditions will occur. Finally, Nea Odos
required modelling the driving licence number and video recordings of an incident.

In this section, we have presented domain-specific extensions to our general purpose Typhon text data type
system which are tailored to specific use case scenarios provided by the 4 Typhon use case partners. We have
further demonstrated that our general purpose data type system can be readily extended with new types that
model a wide range of different application requirements.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 31

D2.2 Text Modelling Extension

Table 9: Data types specific to the use case of GMV
Type Text unit Attributes

GMV
Products

Word GMV Product
+ begin: Int
+ end: Int
+ productSector: str
+ productMake: str

Date of
Purchase

Word Date of Purchase
+ begin: Int
+ end: Int
+ dateOfPurchase: str

Sentiment
Analysis

Word Polarity
+ begin: Int
+ end: Int
+ polarityLabel: str
+ polarityScore: Float

Figure 6: GMV type-system

Page 32 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Table 10: Data types specific to the use case of Nea Odos
Type Text unit Attributes

Licence
number

Word Licence Number
+ begin: Int
+ end: Int
+ licenceNumber: str

Date/Days Word Date/Days
+ begin: Int
+ end: Int
+ days: str

Weather
Conditions

Word Weather Conditions
+ begin: Int
+ end: Int
+ weatherConditions: str

Average
Vehicle
Speed

Word Average Vehicle Speed
+ begin: Int
+ end: Int
+ averageVehicleSpeed: Int

Date Word Date
+ begin: Int
+ end: Int
+ date: Int

Figure 7: Neo Type-System

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 33

D2.2 Text Modelling Extension

6 Sentiment Analysis: A use case application of the Typhon text
data type system

In this section, we demonstrate how the proposed Typhon text data type system can be used for the development
of a real-world text processing pipeline. More specifically, we implement a sentiment analysis UIMA pipeline
that builds upon our type system to automatically annotate documents with sentiment labels. The developed
UIMA pipeline co-ordinates supervised machine learning algorithms, available in the WEKA platform, that
learn to discriminate between positive, negative and neutral documents. The machine learning algorithms re-
quire pre-processing the input documents using different text mining components, such as tokenisers, stemmers
and n-gram extractors to more accurately identify sentiment labels in a document collection.

The section starts by firstly explaining the different data types of the Typhon system which are used in a
sentiment analysis pipeline. It then presents an UIMA sentiment analysis pipeline which is evaluated against
several publicly available datasets. Experiments conducted show that our Typhon data type system can aid
rapid development of sentiment analysis pipelines wherein text processing components can be combined in a
straightforward way using shared data types.

6.1 Sentiment Analysis Typhon Type System

Figure 8 shows the data types of the Typhon type system used in a sentiment analysis pipeline. The Document
data type stores the Language and InputFile (i.e. file path) of an input document while the Tokens type models
the constituent words of a document. The Stem data type converts the constituent words into their root forms
while the NGrams type models Bigrams and Trigrams which are multi-word phrases consisting of two or three
words, respectively. Finally the Sentiment Analysis data type stores the sentiment label of the document.

Figure 8: Typhon text data types used in sentiment analysis.

Page 34 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

6.2 Sentiment Analysis UIMA pipeline

A UIMA pipeline implements three basic operations, namely read, process and write. The read operation is
realised by a Collection Reader component which reads a document from a pre-specified location (e.g. file
stored on disk, textual attribute of a Typhon polystore) and loads the content of the document into memory, the
process operations is implemented by an Analysis Engine which is essential a text mining component(s) that
processes the input document while the write operation is implemented by a CAS Consumer which stores the
text mining analysis results into an pre-specified output location. Any UIMA pipeline should consist of one
Collection Reader (read operation) any number of Analysis Engines (process operation) and finally one CAS
Consumer (write operation).

Figure 9 shows our proposed sentiment analysis UIMA pipeline. The pipeline firstly uses a Collection Reader
(green box of the figure) to load the document collection and to generate Document data types (one for each
document of the collection). Following the Collection reader, we co-ordinate three Analysis Engines (bright
orange boxes), namely a Tokeniser, a Stemmer and NGrams. The different data types generated by the three
Analysis Engines are illustrated in orange-dashed boxes. It should also be noted that three Analysis Engines
of our pipeline can be implemented using different libraries. As an example, a Tokeniser can be implemented
using either standard string processing functions in Java (e.g. splitting by white space character) or using the
LingPipe toolkit. We thus experiment with different combinations of available libraries in order to identify
optimal configuration of our sentiment analysis pipeline. The yellow boarded boxes (See figure 9) show the
various libraries we used for the same component (i.e. same data type). Finally, the WEKA Train is a CAS
Consumer component which uses the WEKA machine learning platform to train a machine learning algorithm
and to and subsequently produce sentiment annotations (i.e. polarity label of each document).

Figure 9: A UIMA sentiment analysis pipeline that uses the proposed Typhon text data type system
to automatically annotate documents with sentiment labels.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 35

D2.2 Text Modelling Extension

6.3 Evaluation of the Sentiment Analysis pipeline

We have conducted 6 large-scale experiments to investigate the optimal configuration of our sentiment analysis
pipeline. More specifically, we evaluate the performance of different pre-processing components (e.g. Stemmer
implemented either in CoreNLP or in Snowball Tartarus), feature weighting schemes (either TF or TF-IDF),
feature types (e.g. bigrams, trigrams, bigrams+trigrams), feature filtering (i.e. removes features according to a
predefined frequency threshold) and classification algorithms (e.g. Support Vector Machines, Random Forest,
Naive Bayes) available in the WEKA platform. It should be noted that the different pipeline configurations
were automatically created simply by changing the XML descriptor file of the sentiment analysis pipeline.

The different pipeline configurations are evaluated in terms of accuracy, precision, recall and F-score using 10-
fold cross validation. More formally, given TP be the number of True Positives, TN for True Negatives, FP
for False Positives and FN for False Negatives the 4 evaluation metrics are computed as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
, F-score = 2× precision× recall

precision + recall

accuracy =
TP + TN

TP + TN + FP + FN

In addition to the 4 evaluation metrics, we also computed the execution time of each pipeline configuration.

We used 6 publicly available datasets to assess the performance of the sentiment analysis pipelines. Table 11
summarises various characteristics of the datasets including:

1. the source and name of the dataset

2. the size in terms of number of documents

3. the number of documents labelled as positive

4. number of documents labelled as negative

5. number of neutral documents (this label is only available for the SemEval117 dataset)

Table 11: Data Sources
Dataset size positive negative neutral
UMICH SI650 [82] 7,086 3,995 3,091 . . .
Amazon cell [42] 1,000 500 500 . . .
Yelp [42] 1,000 500 500 . . .
Imbd [42] 1,000 500 500 . . .
Sentiment140 [53] 1,048,575 554,470 494,105 . . .
SemEval-17 [73] 20,632 7059 3,231 10,342
Sum 1,079,293 567,024 501,927 10,342

For each of the datasets, we identified the best pipeline configuration according to the F-score performance
and the execution time.

Page 36 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

6.3.1 Performance of pre-processing components

The first experiment evaluates the performance of our UIMA sentiment analysis pipeline when using different
combinations of pre-processing components. We build upon the UIMA framework to plug and play pre-
processing components into pipelines making it easier to identify the best pipeline configuration. We develop
4 pipeline configurations using a combination of 2 Tokenisers and 2 Stemmers:

1. Standard tokeniser (T1): our own tokeniser which simply segments a document into its constituent using
the whitespace delimiter character.

2. StringTokenizer (T2): from the java util package8

3. englishStemmer (S1): from the tartarus snowball package9

4. PorterStemmer (S2): from the tartarus snowball package10

Table 12 shows the average performance of the 4 pipeline configurations when applied to the 6 evaluation
datasets. The performance is computed in terms of accuracy, precision, recall and f-score while the reported
results are average values across the performance obtained by 5 classification algorithms, namely Naive Bayes,
Random Forest, SVM, Complement Naive Bayes and LibLinear. It can be observed that the T1-S1 pipeline
configuration obtained the best results in most cases although the performance improvements over the remain-
ing three configurations were insignificant.

6.3.2 Performance of classification algorithms

In this section, we report the performance obtained by 5 classification algorithms available in WEKA,
i.e. namely Naive Bayes (NB), Random Forest (RF), SVM, Complement Naive Bayes (CNB) and LibLinear
(LIB), when using the 4 different combinations of pre-processing components. We developed a total num-
ber of 20 pipeline configurations (i.e. 5 classifier×4 pre-processing components). In addition to the F-score
performance, we also report the time needed to execute each pipeline configuration.

Table 13 shows the highest and lowest F-Score and the slowest and fastest execution time achieved by the dif-
ferent pipeline configurations. We further report the best pipeline configuration when taking into consideration
both the F-Score performance and the execution time. As an example, regarding the UMICH dataset, we ob-
serve that the SVM-T2-S1 pipeline obtains an F-Score performance of 0.991 which is only marginally lower
than the F-Score achieved by the RF-T2-S1 pipeline (highest F-Score performance of 0.998). However, the
SVM-T2-S1 pipeline, which is our preferred configuration, is substantially faster than the RF-T2-S1 pipeline.

Overall, the CNB classifier obtained both a high F-score performance and a fast execution time in 5 out of 6
datasets.

6.3.3 Performance of feature weighting schemes

Table 14 shows the accuracy, precision, recall and F-score performance of the CNB-T1-S1 configuration
pipeline, which obtained a robust performance and fast execution time in the previous experiments, when

8docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html
9snowball.tartarus.org/algorithms/english/stemmer.html

10snowball.tartarus.org/algorithms/porter/stemmer.html

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 37

docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html
snowball.tartarus.org/algorithms/english/stemmer.html
snowball.tartarus.org/algorithms/porter/stemmer.html

D2.2 Text Modelling Extension

Table 12: Average performance results of our sentiment analysis pipeline using 4 different combina-
tions of pre-processing components, i.e. T1-S1, T1-S2, T2-S1. The results are average values of the
accuracy, precision, recall and f-score performance obtained by 5 classification algorithms, namely
Naive Bayes, Random Forest, SVM, Complement Naive Bayes and LibLinear

Pipeline Configuration
Performance T1- S1 T1-S2 T2-S1 T2-S2

U
M

IC
H Accuracy .964 .959 .954 .955

Precision .968 .967 .962 .962
Recall .967 .958 .957 .969
F-score .964 .958 .953 .955

A
m

az
on

Accuracy .802 .803 .802 .803
Precision .807 .807 .807 .807

Recall .802 .803 .802 .803
F-score .801 .802 .801 .802

Im
db

Accuracy .736 .734 .719 .717
Precision .740 .738 .725 .723

Recall .740 .733 .719 .717
F-score .734 .732 .717 .715

Ye
lp

Accuracy .765 .764 .745 .750
Precision .770 .769 .750 .755

Recall .770 .764 .745 .750
F-score .770 .764 .744 .749

Se
nt

i-1
40 Accuracy .786 .785 .783 .783

Precision .789 .789 .787 .787
Recall .788 .787 .785 .784
F-score .785 .785 .782 .782

Se
m

E
va

l Accuracy .791 .789 .774 .777
Precision .789 .785 .774 .779

Recall .760 .758 .746 .745
F-score .757 .756 .740 .741

using the TF and TF-IDF feature weighting schemes. Here, we note that the TF weighting scheme achieved a
slightly higher classification performance than the TF-IDF scheme in 4 out of 6 datasets. Regarding the exe-
cution time, the TF-IDF scheme was faster than the TF scheme in 5 out of 6 datasets. A larger and substantial
time execution margin of approximately 9 seconds is observed on the Senti-140 dataset.

6.3.4 Performance of feature types

Feature engineering, i.e. selecting appropriate features types (e.g. unigrams, bigrams, trigrams or a combination
of the above) for training a machine learning classifier, is prominent in sentiment analysis and can substantially
affect the performance of the classifier[76, 62].

The most commonly used features in sentiment analysis are n-grams, pos tags and lexicon derived features
[2, 23]. In the context of this study we only investigate the performance of different combinations of n-grams.

Page 38 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

As future work we plan to improve upon the performance of our sentiment analysis pipeline by including
additional feature types.

Table 15 shows the average performance of the following n-gram combinations: 1) Unigrams alone, 2) Bigrams
alone, 3) Trigrams alone, 4) Unigrams and Bigrams, 5) Unigrams and Trigrams, 6) Bigrams and Trigrams, 7)
Unigrams Bigrams and Trigrams and 8) All Ngrams combined. The average performance is computed across
all pipeline configurations (i.e. different pre-processing components and classification algorithms).

The obtained results show that the trigram features yielded the lowest performance in most cases while a
combination of all n-grams led to the highest performance in 3 out of the 6 datasets. Unigrams and trigrams
combined obtained the highest performance in the Yelp dataset. We further observe that the performance
margin between the different feature types is substantially high in several occasions. As an example, the
unigrams features showed a performance improvement in terms of F-score of 27.6% over the trigram features
on the Imdb dataset. This determines that a careful feature selection method is required in order to optimise
the performance of sentiment analysis pipelines.

6.3.5 Performance of feature filtering

The last experiment investigates the performance of our sentiment analysis pipeline when using a frequency
threshold filtering method. Considering that one of the research objectives of this project is to scale the text
processing pipelines to big data collections, we are interested in reducing the computational resources needed
to execute the UIMA pipelines without reducing the accuracy of the underlying text mining models. Feature
filtering techniques can decrease the memory requirements of machine learning classifier by eliminating non-
informative features [89].

We implement a frequency threshold method that removes features (i.e. n-grams) with a frequency (i.e. number
of times an n-gram occurs in the document collection) less than a pre-defined threshold. Figure 10 shows the
F-Score performance of our sentiment analysis pipeline when using a varying frequency threshold between
[1, 30]. Here, we observe that for datasets that are smaller in size, the performance of the sentiment analysis
pipeline decreases as we increase the frequency threshold. As an example, the F-score performance on the
Amazon dataset, which consists of only 1, 000 documents, substantially drops from 0.832 for a frequency
threshold of 1 to 0.676 for a threshold of 30. However, for larger dataset (e.g. Senti-140 that contains more
than 1M documents), the F-Score performance shows insignificant variations as we increase the frequency
threshold.

6.4 Summary

We have developed and evaluated a UIMA-based sentiment analysis pipeline that uses our proposed Typhon
text data type system to annotate several datasets with relevant text types. We have further demonstrated
that the Typhon type system accelerates the development process of text processing pipelines considering that
heterogeneous text mining components, which are implemented by different software libraries, can be freely
combined into unified pipelined applications. We have experimented with a wide range of different pipeline
configurations, such as different combinations of pre-processing components and classification algorithms,
feature weighting schemes, feature types and feature filtering, in order to identify the optimal parameter settings
for our sentiment analysis pipeline.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 39

D2.2 Text Modelling Extension

0.55

0.65

0.75

0.85

0.95

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

F-
sc

or
e

Frequency Threshold

﻿UMICH ﻿Amazon ﻿Imdb ﻿Yelp ﻿Senti-140 ﻿SemEval

Figure 10: F-Score performance of the sentiment analysis pipeline on an increasing frequency thresh-
old of features that are retained in the dataset.

Page 40 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Table 13: Best pipeline configurations in terms of both F-Score and execution time across the 6
evaluation datasets. The table also reports the highest and lowest F-Score and the slowest and fastest
execution time obtained by the different pipeline configurations.

Pipeline Configuration F-score Time (mm:ss)

U
M

IC
H

Highest F-score RF-T2-S1 .998 17:46
Lowest F-Score NB-T2-S1 .807 04:11
Slowest Time RF-T1-S2 .997 22:23
Fastest Time CNB-T2-S2 .979 00:01
Best Configuration SVM-T2-S1 .991 00:05

A
m

az
on

Highest F-Score CNB-T1-S1 .831 00:01
Lowest F-Score NB-T1-S1 .748 00:05
Slowest Time RF-T1-S2 .777 06:09
Fastest Time CNB-T2-S2 .829 00:01
Best Configuration CNB-T1-S1 .831 00:01

Im
bd

Highest F-Score CNB-T1-S1 .787 00:02
Lowest F-Score NB-T2-S1 .675 01:00
Slowest Time RF-T2-S1 .699 05:13
Fastest Time CNB-T1-S2 .773 00:02
Best Configuration CNB-T1-S1 .787 00:02

Ye
lp

Highest F-Score CNB-T1-S2 .798 00:01
Lowest F-Score NB-T2-S1 .665 01:02
Slowest Time RF-T2-S2 .745 04:35
Fastest Time CNB-T1-S1 .784 00:00
Best Configuration CNB-T1-S2 .798 00:01

Se
m

E
va

l Highest F-Score CNB-T1-S1 .832 00:02
Lowest F-Score NB-T2-S2 .588 07:06
Slowest Time RF-T1-S1 .753 01:22:05
Fastest Time CNB-T1-S1 .808 00:01
Best Configuration CNB-T1-S1 .832 00:02

Se
nt

i-1
40 Highest F-Score LIB-T1-S1 .798 02:03:42

Lowest F-Score CNB-T2-S1 .768 00:27:04
Slowest Time LIB-T2-S2 .796 02:07:00
Fastest Time CNB-T1-S2 .779 00:26:20
Best Configuration CNB-T1-S2 .779 00:25

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 41

D2.2 Text Modelling Extension

Table 14: Performance of the CNB-T1-S1 configuration pipeline when using the TF and TF-IDF
feature weighting schemes across the 6 dataset. The table also records the execution time of the two
weighting schemes.

TF TF-IDF TF TF-IDF

U
M

IC
H

Time (sec) .055 .577

A
m

az
on

Time (sec) .022 .018
Accuracy .982 .974 Accuracy .835 .833
Precision .982 .973 Precision .839 .835
Recall .981 .975 Recall .835 .833
Fscore .982 .974 Fscore .834 .833

Im
db

Time (sec) .067 .064

Ye
lp

Time (sec) .387 .02
Accuracy .782 .774 Accuracy .787 .788
Precision .791 .778 Precision .791 .790
Recall .782 .775 Recall .787 .788
Fscore .780 .774 Fscore .786 .788

Se
nt

i-1
40

Time (sec) 34.277 25.061

Se
m

E
va

l Time (sec) 1.119 .278
Accuracy .772 .772 Accuracy .839 .810
Precision .780 .780 Precision .801 .780
Recall .777 .777 Recall .815 .806
Fscore .772 0.772 Fscore .807 .789

Page 42 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

Table 15: Features:This table represents an average of all the models including all datasets, prepro-
cessing techniques and classifiers for each of the features.

Dataset UMICH Amazon Imdb Yelp Senti-140 SemEval

U
ni

gr
am

s Accuracy .930 .816 .816 .797 .738 .837
Precision .972 .819 .816 .819 .744 .827
Recall .973 .816 .816 .797 .743 .782
Fscore .972 .816 .816 .797 .739 .798

B
ig

ra
m

s Accuracy .952 .704 .635 .680 .732 .773
Precision .950 .727 .637 .688 .740 .746
Recall .955 .704 .635 .680 .737 .775
Fscore .952 .696 .634 .677 .732 .753

Tr
ig

ra
m

s Accuracy .968 .608 .575 .691 .696 .512
Precision .966 .676 .607 .663 .714 .664
Recall .970 .608 .575 .601 .703 .638
Fscore .968 .567 .540 .560 .694 .518

U
ni

gr
am

s
an

d
Tr

ig
ra

m
s Accuracy .969 .702 .648 .681 .749 .681

Precision .967 .728 .650 .691 .750 .707
Recall .971 .702 .648 .681 .745 .736
Fscore .969 .693 .647 .677 .740 .676

U
ni

gr
am

s
an

d
B

ig
ra

m
s Accuracy .975 .835 .718 .796 .768 .840

Precision .973 .837 .786 .798 .774 .819
Recall .975 .835 .781 .796 .772 .802
Fscore .974 .835 .780 .796 .768 .809

U
ni

gr
am

s
an

d
Tr

ig
ra

m
s Accuracy .978 .831 .807 .800 .877 .821

Precision .977 .833 .810 .801 .774 .793
Recall .979 .831 .807 .800 .771 .815
Fscore .978 .831 .807 .800 .766 .801

A
ll

N
gr

am
s

Accuracy .980 .831 .788 .794 .772 .844
Precision .980 .833 .792 .796 .780 .832
Recall .979 .831 .788 .794 .777 .793
Fscore .980 .831 .787 .794 .772 .808

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 43

D2.2 Text Modelling Extension

7 Risks

Identified risks are mainly about the possible difficulties in implementing the text processing tasks11, described
by our type system, in the future. The main sources of potential difficulties are summarised below:

1. lack of adequate amounts of manually labelled data required to train machine learning algorithms

2. ambiguous terms and phrases. for example, “Asia” and “Jordan” are names of locations and also names
of people.

3. lack of text processing components in under-resourced languages. For example, in Greek there may be
difficulties in finding readily available text processing tools and libraries.

4. lack of full access to the data of Typhon use case partners. For example, parts of Alpha Bank’s data
cannot be shared outside the bank’s premises. As a result, we have to train our models on data similar to
the real one and then share our trained workflows with Alpha Bank for local deployment. In this case,
fine-tuning the parameters of the system may not be ideal.

Additionally, risks include the add-on delay when running application through UIMA. Processing time may be
significantly more than existing text processing components, e.g. Weka, without the UIMA wrapper.

11All text processing tasks associated with the corresponding data types in the type system are shown in Appendix A.

Page 44 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

8 Typhon requirements

In this section, we review the technology requirements and use case requirements of Deliverable 1.1 that
are related to text processing. Tables 16 and 17 present our progress towards each technology and use case
requirement, respectively. Requirements that are to be completed are marked with the task number and the
time frame in which they will be addressed.

Table 16: Consolidated Technology Requirements

Number Requirement Priority Status Future Time
task frame (M)

WORKPACKAGE 2: HYBRID POLYSTORE DESIGN
D1 TyphonML shall enable the specification of

data entities and relationships that will be
stored in TyphonML

Shall Done

D4 Definition of custom data types to be used in
TyphonML data models shall be supported.

Shall Done

D5 Specification of data types that are needed
for applying text-specific analysis (e.g. text,
video, recordings) shall be supported.

Shall Done

D6 The definition of structured data types
(e.g. sentences, facts, entities, events) that can
be extracted from text and represented in Ty-
phonML shall be supported.

Shall Done

WORKPACKAGE 4: HYBRID POLYSTORE QUERYING
D33 The TyphonQL engine shall support normal-

ization of natural language fragments to en-
able "querying modulo spelling".

Shall To be done 5.4 12-30

D36 TyphonQL shall support querying textual
data.

Shall To be done 5.4 12-30

WORKPACKAGE 5: HYBRID POLYSTORE ANALYTICS AND MONITORING
D50 The development of text mining pipelines for

data events shall be simplified.
Shall To be done 5.4 12-30

WORK PACKAGE 7: PLATFORM INTEGRATION AND EVALUATION
D76 Each of the Typhon components shall adhere

to the specified TYPHON architectural guide-
lines

Shall Ongoing

D77 Each of the Typhon components shall use Git
for source code control

Shall Ongoing

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 45

D2.2 Text Modelling Extension

Table 17: Use-case requirements

Number Requirement Priority Status Future Time
task frame (M)

TEXT DATA MODELLING
27 The text data storage shall be able to parse its

data to a relational database
Shall Done

28 The text data storage shall be able to parse its
data to an array database

Shall Done

29 Text data modelling for XML files shall be
provided

Shall Done

POLYSTORE QUERY LANGUAGE
47 The polystore query language should expose

the same semantic data types and operations
of the underlying database technologies as de-
fined in their schemas or metamodels

Should Done

52 The query language shall be able to interpret
and execute text search queries

Shall To be done 5.4 12-30

QUERIES ON STRUCTURED DATA
58 The system shall be able to process queries on

relational databases
Shall To be done 5.4 12-30

61 The system shall be able to process queries on
text stores

Shall To be done 5.4 12-30

QUERIES ON TEXTUAL DATA
63 The polystore query language should expose

a relevant subset of the data types and oper-
ations of at least one of the following: Solr,
Lucene

Should To be done 5.4 12-30

64 In the text data queries it shall be possible to
search for one or more different keywords in
one query

Shall To be done 5.4 12-30

65 Text data queries using patterns or full text
search shall be supported

Shall To be done 5.4 12-30

66 The text data queries may be able to autocor-
rect words

May To be done 5.4 12-30

67 The text data queries may be able to recognize
incorrect spellings and mark them

May To be done 5.4 12-30

68 The text data queries may be able to recognise
different spellings for one word (AE/BE)

May To be done 5.4 12-30

69 The text data queries shall be able to recog-
nize the Greek language

Shall To be done 5.4 12-30

Page 46 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

9 Conclusion

In this deliverable, we presented a text data type system for modelling annotations that are automatically ex-
tracted from natural language text. Previous literature related to types of text annotations, platforms supporting
text annotations and type-systems was investigated. The results of our literature review showed that stand-off
annotations better satisfy the requirements of our project when compared to in-line annotations. We further
reviewed existing text modelling and text processing platforms and found that although all the platforms had
some advantages in text processing, the best platform to fit the needs of the project is the Unstructured Infor-
mation Management Architecture (UIMA), due to its flexibility and extensibility.

Based on the general text processing requirements of Typhon use case partners, we developed a type system
that addressed them. Then, we commented on the flexibility of the type system and illustrated how it can be
extended. In particular, we extended our general type system with data types related to specific applications of
interest to Typhon use case partners.

To demonstrate the use of the type system in practice, we developed and evaluated sentiment analysis work-
flows. The results show that our type system can help in developing sentiment analysis pipelines rapidly.
Additionally, the type system allows to synthesise into workflows different text processing components easily,
using shared data types. Based on the results of this work, we are preparing a paper that is currently at a draft
stage and will be submitted in the near future.

In Task 5.4 (Month 12-30), we will use these data-types as a base to create text processing pipelines. Addi-
tionally, we will design and develop text processing components that help in faceted search, in identifying new
information (e.g. categories or classes) and in applying topic modelling and text classification.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 47

D2.2 Text Modelling Extension

References

[1] Fabian Abel, Ilknur Celik, Geert-Jan Houben, and Patrick Siehndel. Leveraging the semantics of tweets
for adaptive faceted search on twitter. In International Semantic Web Conference, pages 1–17. Springer,
2011.

[2] Nabeela Altrabsheh, Mihaela Cocea, and Sanaz Fallahkhair. Sentiment analysis: towards a tool for
analysing real-time students feedback. In Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th
International Conference on, pages 419–423. IEEE, 2014.

[3] Vimala Balakrishnan and Ethel Lloyd-Yemoh. Stemming and lemmatization: A comparison of retrieval
performances. Lecture Notes on Software Engineering, 2(3), 2014.

[4] Mathias Bank and Martin Schierle. A survey of text mining architectures and the uima standard. In
LREC, pages 3479–3486, 2012.

[5] Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. Developing a large semantically anno-
tated corpus. In LREC 2012, Eighth International Conference on Language Resources and Evaluation,
2012.

[6] Riza Batista-Navarro, Jacob Carter, and Sophia Ananiadou. Argo: enabling the development of bespoke
workflows and services for disease annotation. Database, 2016, 2016.

[7] Steven Bethard, Philip Ogren, and Lee Becker. Cleartk 2.0: Design patterns for machine learning in
uima. In International Conference on Language Resources & Evaluation:[proceedings]. International
Conference on Language Resources and Evaluation, volume 2014, page 3289. NIH Public Access, 2014.

[8] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

[9] Kalina Bontcheva, Hamish Cunningham, Ian Roberts, Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. Gate teamware: a web-based, collaborative text annotation framework. Language
Resources and Evaluation, 47(4):1007–1029, 2013.

[10] Kalina Bontcheva, Hamish Cunningham, Ian Roberts, Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. Gate teamware: a web-based, collaborative text annotation framework. Language
Resources and Evaluation, 47(4):1007–1029, 2013.

[11] Kalina Bontcheva, Marin Dimitrov, Diana Maynard, Valentin Tablan, and Hamish Cunningham. Shallow
methods for named entity coreference resolution. In Chaınes de références et résolveurs d’anaphores,
workshop TALN, 2002.

[12] Jean-Sébastien Brunner and Thibaud Latour. Referencing text documents in multidimensional concept
spaces for technological and scientific watch. In Proceedings of" Workshop on Terminology, Ontology,
and Knowledge Representation, pages 22–23, 2004.

[13] Paul Buitelaar, Philipp Cimiano, Stefania Racioppa, and Melanie Siegel. Ontology-based information
extraction with soba. In Proceedings of the International Conference on Language Resources and Eval-
uation (LREC), 2006.

[14] Johan Carlberger, Hercules Dalianis, Martin Duneld, and Ola Knutsson. Improving precision in infor-
mation retrieval for swedish using stemming. In Proceedings of the 13th Nordic Conference of Compu-
tational Linguistics (NODALIDA 2001), 2001.

Page 48 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

[15] Damien Cram and Béatrice Daille. Terminology extraction with term variant detection. Proceedings of
ACL-2016 System Demonstrations, pages 13–18, 2016.

[16] Hamish Cunningham. Gate, a general architecture for text engineering. Computers and the Humanities,
36(2):223–254, 2002.

[17] David S Day, Chad McHenry, Robyn Kozierok, and Laurel D Riek. Callisto: A configurable annotation
workbench. In LREC, 2004.

[18] Susan T Dumais. Latent semantic analysis. Annual review of information science and technology,
38(1):188–230, 2004.

[19] Manaal Faruqui, Sebastian Padó, and Maschinelle Sprachverarbeitung. Training and evaluating a german
named entity recognizer with semantic generalization. In KONVENS, pages 129–133, 2010.

[20] David Ferrucci and Adam Lally. Uima: an architectural approach to unstructured information processing
in the corporate research environment. Natural Language Engineering, 10(3-4):327–348, 2004.

[21] MAchine Learning for LanguagE Toolkit. MALLET website. http://mallet.cs.umass.edu/,
2018. Accessed: 2018-12-20.

[22] Maria Fuentes and Horacio Rodríguez. Using cohesive properties of text for automatic summarization.
JOTRI’02, 2002.

[23] Alec Go, Lei Huang, and Richa Bhayani. Twitter sentiment analysis. CS224N Project Report, Stanford,
2009.

[24] Ralph Grishman. The nyu system for muc-6 or where’s the syntax? In Proceedings of the 6th conference
on Message understanding, pages 167–175. Association for Computational Linguistics, 1995.

[25] Stanford NLP Group. Standford-co-reference. https://stanfordnlp.github.io/CoreNLP/
coref.html, 2018. Accessed: 2018-12-20.

[26] Emma Haddi, Xiaohui Liu, and Yong Shi. The role of text pre-processing in sentiment analysis. Procedia
Computer Science, 17:26–32, 2013.

[27] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott Robinson, Michaela Bür-
gle, Holger Düwiger, and Ulrich Scheel. Faceted wikipedia search. In International Conference on
Business Information Systems, pages 1–11. Springer, 2010.

[28] Udo Hahn, Ekaterina Buyko, Rico Landefeld, Matthias Mühlhausen, Michael Poprat, Katrin Tomanek,
and Joachim Wermter. An overview of jcore, the julie lab uima component repository. In Proceedings of
the LREC, volume 8, pages 1–7, 2008.

[29] Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao, John McNaught, Yoshimasa Tsuruoka, and
Sophia Ananiadou. An annotation type system for a data-driven nlp pipeline. In Proceedings of the
Linguistic Annotation Workshop, pages 33–40. Association for Computational Linguistics, 2007.

[30] Martin Hassel. Evaluation of automatic text summarizaiton: a practical implementation. PhD thesis,
Numerisk analys och datalogi, 2004.

[31] Nancy Ide, Christian Chiarcos, Manfred Stede, and Steve Cassidy. Designing annotation schemes: from
model to representation. In Handbook of Linguistic Annotation, pages 73–111. Springer, 2017.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 49

http://mallet.cs.umass.edu/
https://stanfordnlp.github.io/CoreNLP/coref.html
https://stanfordnlp.github.io/CoreNLP/coref.html

D2.2 Text Modelling Extension

[32] Nancy Ide, Christiane Fellbaum, Collin Baker, and Rebecca Passonneau. The manually annotated sub-
corpus: A community resource for and by the people. In Proceedings of the ACL 2010 conference short
papers, pages 68–73. Association for Computational Linguistics, 2010.

[33] Radu Ion, Elena Irimia, Dan Stefanescu, and Dan Tufis. Rombac: The romanian balanced annotated
corpus. In LREC, pages 339–344. Citeseer, 2012.

[34] Chuleerat Jaruskulchai and Canasai Kruengkrai. A practical text summarizer by paragraph extraction for
thai. In Proceedings of the sixth international workshop on Information retrieval with Asian languages-
Volume 11, pages 9–16. Association for Computational Linguistics, 2003.

[35] Ning Kang, Erik M van Mulligen, and Jan A Kors. Comparing and combining chunkers of biomedical
text. Journal of biomedical informatics, 44(2):354–360, 2011.

[36] Ioannis Manousos Katakis, Georgios Petasis, and Vangelis Karkaletsis. Clarin-el web-based annotation
tool. In LREC, 2016.

[37] Gitansh Khirbat. Supervised Algorithms for Complex Relation Extraction. PhD thesis, UNIVERSITY
OF MELBOURNE, 2017.

[38] Youngjun Kim, Ellen Riloff, and Stéphane M Meystre. Improving classification of medical assertions in
clinical notes. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies: short papers-Volume 2, pages 311–316. Association for Computa-
tional Linguistics, 2011.

[39] BalaKrishna Kolluru, Lezan Hawizy, Peter Murray-Rust, Junichi Tsujii, and Sophia Ananiadou. Using
workflows to explore and optimise named entity recognition for chemistry. PloS one, 6(5):e20181, 2011.

[40] Georgios Kontonatsios, Paul Thompson, Riza Theresa Batista-Navarro, Claudiu Mihăilă, Ioannis Ko-
rkontzelos, and Sophia Ananiadou. Extending an interoperable platform to facilitate the creation of mul-
tilingual and multimodal nlp applications. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 43–48, 2013.

[41] Tuomo Korenius, Jorma Laurikkala, Kalervo Järvelin, and Martti Juhola. Stemming and lemmatization in
the clustering of finnish text documents. In Proceedings of the thirteenth ACM international conference
on Information and knowledge management, pages 625–633. ACM, 2004.

[42] Dimitrios Kotzias, Misha Denil, Nando De Freitas, and Padhraic Smyth. From group to individual labels
using deep features. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 597–606. ACM, 2015.

[43] Lun-Wei Ku, Li-Ying Lee, Tung-Ho Wu, and Hsin-Hsi Chen. Major topic detection and its application
to opinion summarization. In Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 627–628. ACM, 2005.

[44] Fotis Lazarinis. Text Extraction and Web Searching in a Non-Latin Language. PhD thesis, University of
Sunderland, 2008.

[45] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, and Dan Jurafsky.
Stanford’s multi-pass sieve coreference resolution system at the conll-2011 shared task. In Proceed-
ings of the fifteenth conference on computational natural language learning: Shared task, pages 28–34.
Association for Computational Linguistics, 2011.

Page 50 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

[46] Elizabeth D Liddy and Sung-Hyon Myaeng. Tipster panel-dr-link’s linguistic-conceptual approach to
document detection. In TREC, pages 113–130, 1992.

[47] Bing Liu and Lei Zhang. A survey of opinion mining and sentiment analysis. In Mining text data, pages
415–463. Springer, 2012.

[48] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky.
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations, pages 55–60, 2014.

[49] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky.
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations, pages 55–60, 2014.

[50] Scott Mardis, John Burger, P Anand, D Anderson, J Griffith, M Light, C McHenry, A Morgan, and
J Ponte. Qanda and the catalyst architecture. In AAAI Spring Symposium on Mining Answers from Text
and Knowledge Bases, 2002.

[51] Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, et al. Universal dependency annotation
for multilingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2, pages 92–97, 2013.

[52] Mohamed Mejri and Jalel AKAICHI. A survey of textual event extraction from social networks. Pro-
ceedings of the First Conference on Language Processing and Knowledge Management, 2017.

[53] Saif M Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. Nrc-canada: Building the state-of-the-art
in sentiment analysis of tweets. arXiv preprint arXiv:1308.6242, 2013.

[54] Thomas S Morton. Using coreference for question answering. In Proceedings of the Workshop on
Coreference and its Applications, pages 85–89. Association for Computational Linguistics, 1999.

[55] Tony Mullen and Robert Malouf. A preliminary investigation into sentiment analysis of informal political
discourse. In AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, pages 159–
162, 2006.

[56] David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification. Lingvisticae
Investigationes, 30(1):3–26, 2007.

[57] Adeline Nazarenko, Erick Alphonse, Julien Derivière, Thierry Hamon, Guillaume Vauvert, and Davy
Weissenbacher. The alvis format for linguistically annotated documents. arXiv preprint cs/0609136,
2006.

[58] Günter Neumann and Bogdan Sacaleanu. Experiments on robust nl question interpretation and multi-
layered document annotation for a cross–language question/answering system. In Workshop of the Cross-
Language Evaluation Forum for European Languages, pages 411–422. Springer, 2004.

[59] LIONEL NICOLAS, AIVARS GLAZNIEKS, EGON STEMLE, and ANDREA ABEL. A generic data
workflow for building annotated text corpora, 2015.

[60] Philip V Ogren, Philipp G Wetzler, and Steven Bethard. Cleartk: A uima toolkit for statistical natural
language processing. Towards Enhanced Interoperability for Large HLT Systems: UIMA for NLP, 32,
2008.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 51

D2.2 Text Modelling Extension

[61] Petya Osenova and Sia Kolkovska. Combining the named-entity recognition task and np chunking strat-
egy for robust pre-processing. In Proceedings of the Workshop on Treebanks and Linguistic Theories,
September, pages 20–21, 2002.

[62] Subarno Pal and Soumadip Ghosh. Sentiment analysis using averaged histogram. International Journal
of Computer Applications, 162(12), 2017.

[63] Bo Pang, Lillian Lee, et al. Opinion mining and sentiment analysis. Foundations and Trends® in Infor-
mation Retrieval, 2(1–2):1–135, 2008.

[64] Maria Teresa Pazienza, Marco Pennacchiotti, and Fabio Massimo Zanzotto. Terminology extraction: an
analysis of linguistic and statistical approaches. In Knowledge mining, pages 255–279. Springer, 2005.

[65] Georgios Petasis. Ellogon and the challenge of threads. In Proceedings of the 17’th Annual Tcl/Tk
Conference, page 287. Lulu. com, 2010.

[66] Georgios Petasis, Vangelis Karkaletsis, Georgios Paliouras, Ion Androutsopoulos, and Constantine D
Spyropoulos. Ellogon: A new text engineering platform. arXiv preprint cs/0205017, 2002.

[67] Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi. Learning to classify short and sparse text
& web with hidden topics from large-scale data collections. In Proceedings of the 17th international
conference on World Wide Web, pages 91–100. ACM, 2008.

[68] Raymond K Pon, Alfonso F Cardenas, David Buttler, and Terence Critchlow. Tracking multiple topics
for finding interesting articles. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 560–569. ACM, 2007.

[69] Piotr Przybyła, Austin J Brockmeier, Georgios Kontonatsios, Marie-Annick Le Pogam, John McNaught,
Erik von Elm, Kay Nolan, and Sophia Ananiadou. Prioritising references for systematic reviews with
robotanalyst: A user study. Research synthesis methods, 9(3):470–488, 2018.

[70] Dietrich Rebholz-Schuhmann, Harald Kirsch, Goran Nenadic, D Rebholz-Schuhmann, H Kirsch, and
G Nenadic. Iexml: towards an annotation framework for biomedical semantic types enabling interoper-
ability of text processing modules. SIG BioLink, ISMB, 2006.

[71] Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo Gomes. Nlpport: A pipeline for portuguese
nlp (short paper). In OASIcs-OpenAccess Series in Informatics, volume 62. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[72] Carlos Rodrıguez-Penagos, David Garcıa Narbona, Guillem Massó Sanabre, Jens Grivolla, and Joan Co-
dina Filbá. Sentiment analysis and visualization using uima and solr. Unstructured Information Manage-
ment Architecture (UIMA), page 42, 2013.

[73] Sara Rosenthal, Noura Farra, and Preslav Nakov. Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 502–
518, 2017.

[74] Hassan Saif, Yulan He, and Harith Alani. Semantic sentiment analysis of twitter. In International seman-
tic web conference, pages 508–524. Springer, 2012.

[75] Diana Santos. Punctuation and multilinguality: Some reflections from a language engineering perspec-
tive. Working Papers in Applied Linguistics, 4(98):138–160, 1998.

Page 52 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

[76] Abeed Sarker and Graciela Gonzalez. Hlp @ upenn at semeval-2017 task 4a: A simple, self-optimizing
text classification system combining dense and sparse vectors. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pages 640–643, 2017.

[77] G Savova, Karin Kipper-Schuler, J Buntrock, and C Chute. Uima-based clinical information extraction
system. Towards enhanced interoperability for large HLT systems: UIMA for NLP, 39, 2008.

[78] Guergana K Savova, James J Masanz, Philip V Ogren, Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. Mayo clinical text analysis and knowledge extraction system (ctakes):
architecture, component evaluation and applications. Journal of the American Medical Informatics As-
sociation, 17(5):507–513, 2010.

[79] Ulrich Schäfer. Middleware for creating and combining multi-dimensional nlp markup. In Proceedings
of the 5th Workshop on NLP and XML: Multi-Dimensional Markup in Natural Language Processing,
pages 81–84. Association for Computational Linguistics, 2006.

[80] Fadi Abu Sheika and Diana Inkpen. Learning to classify documents according to formal and informal
style. Linguistic Issues in Language Technology, 8(1):1–29, 2012.

[81] Sunghwan Sohn and Guergana K Savova. Mayo clinic smoking status classification system: extensions
and improvements. In AMIA Annual Symposium Proceedings, volume 2009, page 619. American Medical
Informatics Association, 2009.

[82] UMICH. UMICH SI650 - Sentiment Classification. https://www.kaggle.com/c/
si650winter11, 2011. Accessed: 2018-12-20.

[83] Joan-Josep Vallbé, M Antònia Martí, Blaz Fortuna, Aleks Jakulin, Dunja Mladenic, and Pompeu
Casanovas. Stemming and lemmatisation: improving knowledge management through language pro-
cessing techniques. Trends in Legal Knowledge, the Semantic Web and the Regulation of Electronic
Social Systems, 2007.

[84] Fabio Valsecchi, Matteo Abrate, Clara Bacciu, Silvia Piccini, and Andrea Marchetti. Text encoder and
annotator: an all-in-one editor for transcribing and annotating manuscripts with rdf. In International
Semantic Web Conference, pages 399–407. Springer, 2016.

[85] Johanna Völker, Sergi Fernandez Langa, and York Sure. Supporting the construction of spanish legal
ontologies with text2onto. In Computable Models of the Law, pages 105–112. Springer, 2008.

[86] Benjamin Waldron, Ann Copestake, Ulrich Schäfer, and Bernd Kiefer. Preprocessing and tokenisation
standards in delph-in tools. In Proceedings of the 5th International Conference on Language Resources
and Evaluation, pages 2263–2268, 2006.

[87] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the conference on human language technology and empirical
methods in natural language processing, pages 347–354. Association for Computational Linguistics,
2005.

[88] Stephen T Wu, Vinod C Kaggal, Dmitriy Dligach, James J Masanz, Pei Chen, Lee Becker, Wendy W
Chapman, Guergana K Savova, Hongfang Liu, and Christopher G Chute. A common type system for
clinical natural language processing. Journal of biomedical semantics, 4(1):1, 2013.

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 53

https://www.kaggle.com/c/si650winter11
https://www.kaggle.com/c/si650winter11

D2.2 Text Modelling Extension

[89] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data. IEEE transac-
tions on knowledge and data engineering, 26(1):97–107, 2014.

[90] Yang Yu and Xiao Wang. World cup 2014 in the twitter world: A big data analysis of sentiments in us
sports fans’ tweets. Computers in Human Behavior, 48:392–400, 2015.

[91] Wajdi Zaghouani. Renar: A rule-based arabic named entity recognition system. ACM Transactions on
Asian Language Information Processing (TALIP), 11(1):2, 2012.

[92] Zhi Zhong and Hwee Tou Ng. It makes sense: A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 system demonstrations, pages 78–83. Association for
Computational Linguistics, 2010.

Page 54 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

A NLP Tasks and Data Types

The following table presents the Natural Language Processing (NLP) tasks that relate to the data and re-
quirements of Typhon use case partners. Each task is accompanied by a description of its function and the
prerequisite NLP tasks that need to run before it. For example, in order to split the sentences of a text, we first
need to read the contents first and thus the prerequisite component for a Sentence Segmentation is a Document
Reader: T1->T3. The last column shows the data type of the result of the execution of each NLP task which
will be subsequently stored and indexed in ElasticSearch.

NLP Task Id Description Pre-requisite Generated
NLP Tasks ElasticSearch Object

Document
Reader

T1 Reads a document from a source-
File location and creates a Docu-
ment data type

Document
+ begin: Int
+ end: Int
+ language: String
+ encoding: String
+ sourceFile: URI

Paragraph
Segmentation

T2 Segments input document into
constituent paragraphs

T1→ T2 Paragraph
+ begin: Int
+ end: Int

Sentence
Segmentation

T3 Segments input document or para-
graph into constituent sentences

T1→ T3 Sentence
+ begin: Int
+ end: Int
+ sentenceValue: String

Tokenisation T4 Segments input document/para-
graph/sentence into constituent
words

T1 → T3 →
T4

Token
+ begin: Int
+ end: Int
+ tokenValue: String

Phrase
Extractor

T5 Segments input document/para-
graph/sentence into constituent
phrases

T1 → T3 →
T4→ T5

Phrase
+ begin: Int
+ end: Int
+ phraseValue: List<Token>

NGram Ex-
tractor

T6 Segments input document/para-
graph/sentence into constituent n-
grams (i.e. list of n consecutive
words)

T1 → T3 →
T4→ T6

NGram
+ begin: Int
+ end: Int
+ ngramValue: List<Token>

PoS Tagging T7 Identifies Part-of-Speech tags of
tokens

T1 → T3 →
T4→ T7

POS
+ begin: Int
+ end: Int
+ posValue: String

Lemmatisation T8 Converts tokens into lemmas,
e.g. computing→ compute

T1 → T3 →
T4→ T8

Lemma
+ begin: Int
+ end: Int
+ lemmaValue: String

Stemming T9 Converts tokens into stems,
e.g. computing→ comput

T1 → T3 →
T4→ T9

Stem
+ begin: Int
+ end: Int
+ stemValue: String

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 55

D2.2 Text Modelling Extension

NLP Task Id Description Pre-requisite Generated
NLP Tasks ElasticSearch Object

Dependency
Parsing

T10 Identifies syntactic relationships
between “source” words and “tar-
get” words which modify those
“source” words. The label of the
syntactic relationship describes
the exact nature of the depen-
dency.

T1 → T3 →
T4 → T7 →
T10

Dependency
+ begin: Int
+ end: Int
+ source: Token
+ target: Token
+ label: String

Chunking T11 Identifies syntactic groups,
i.e. chunks, consisting of tokens
with their corresponding PoS
tags.

T1 → T3 →
T4 → T7 →
T11

Chunk
+ begin: Int
+ end: Int
+ constituentTokens: List<Token>
+ constituentPOS: List<POS>
+ label: String

Sentiment
Analysis

T12 Assigns a polarity label (e.g. posi-
tive/neutral/negative) or a polarity
score (Float) to a document

T1 → T3 →
T4 → T8 →
T6→ T12

Polarity
+ begin: Int
+ end: Int
+ polarityLabel: String
+ polarityScore: Float

Text
Classification

T13 Assigns a category (e.g. politic-
s/news/sports) or a category score
(Float) to a document

T1 → T3 →
T4 → T8 →
T6→ T13

Cateory
+ begin: Int
+ end: Int
+ categoryLabel: String
+ categoryScore: Float

Topic
Modelling

T14 Assigns a topic(s) to an input doc-
ument. A topic is described by a
list of descriptive keyword. A de-
scriptive keyword is assigned a co-
efficient score denoting the corre-
lation between the word and the
underlying topic

T1 → T3 →
T4→ T14

Topic
+ begin: Int
+ end: Int
+ descriptiveWords: List<String>
+ wordCoefficients: List<Float>

Term
Extraction

T15 Extracts terms (single-word or
multi-word) from an input docu-
ment. A term is also assigned a
weight denoting the importance of
a term within a document

T1 → T3 →
T4 → T7 →
T15

Term
+ begin: Int
+ end: Int
+ constituentTokens: List<Token>
+ weight: Float

Named Entity
Recognition

T16 Extracts named entities (single-
word or multi-word) from an
input document. A named
entity is assigned a semantic
role (e.g. product/organisation/lo-
cation/person name)

T1 → T3 →
T4 → T7 →
T11→ T16

NamedEntity
+ begin: Int
+ end: Int
+ constituentTokens: List<Token>
+ label: String

Relation
Extraction

T17 Identifies semantic links/relations
between a source and a target
NamedEntity.

T1 → T3 →
T4 → T7 →
T11 → T10
→ T16 →
T17

Relation
+ begin: Int
+ end: Int
+ sourceNE: NamedEntity
+ targetNE: NamedEntity
+ label: String

Page 56 Version 1.1
Confidentiality: Public Distribution

27 December 2018

D2.2 Text Modelling Extension

NLP Task Id Description Pre-requisite Generated
NLP Tasks ElasticSearch Object

Event
Extraction

T18 Extracts events from an input doc-
ument. An event (i.e. textual fact)
is “triggered” by a word and it
links two or more NamedEntities
(arguments of event)

T1 → T3 →
T4 → T7 →
T11 → T10
→ T16 →
T18

Event
+ begin: Int
+ end: Int
+ triger: token
+ arguments: List<NamedEntity>
+ theme: String

Coreference
Resolution

T19 Extracts coreference chains from
an input document. A coreference
chain consists of an antecedent,
i.e. the main entity referred in text,
and an anaphora, e.g. a pronoun
referring to the antecedent

T1 → T3 →
T4 → T7 →
T11 → T10
→ T16 →
T19

CoreferenceChain
+ begin: Int
+ end: Int
+ antecedent: List<Token>
+ anaphora: List<Token>

Table 18: NLP tasks and associated data types

27 December 2018 Version 1.1
Confidentiality: Public Distribution

Page 57

	Introduction
	Overview
	Intentions
	Outcomes

	Literature Review
	Types of Text Annotations
	Text Modelling and Processing Frameworks
	TIPSTER
	Ellogon
	GATE
	Heart of Gold (HoG)
	UIMA

	Type-Systems and Text-Types

	Typhon Text Data Type System
	Overview of developed Type systems
	General Data Types
	Syntactic Data Types
	Semantic Data Types

	Extensibility and Flexibility of Typhon Type System
	Use cases
	Alpha Bank
	Volkswagen
	GMV
	Nea Odos

	Sentiment Analysis: A use case application of the Typhon text data type system
	Sentiment Analysis Typhon Type System
	Sentiment Analysis UIMA pipeline
	Evaluation of the Sentiment Analysis pipeline
	Performance of pre-processing components
	Performance of classification algorithms
	Performance of feature weighting schemes
	Performance of feature types
	Performance of feature filtering

	Summary

	Risks
	Typhon requirements
	Conclusion
	NLP Tasks and Data Types

