

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L’Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

TYPHON Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the TYPHON Project Partners.

Project Number 780251

D3.5 Optimized Hybrid Polystore VM Assembly Tools

Version 1.0
9 July 2020

Final

Public Distribution

ATB

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page ii Version 1.0 9 July 2020

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Alpha Bank

Vasilis Kapordelis

40 Stadiou Street

102 52 Athens

Greece

Tel: +30 210 517 5974

E-mail: vasileios.kapordelis@alpha.gr

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Centrum Wiskunde & Informatica

Tijs van der Storm

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 9333

E-mail: storm@cwi.nl

CLMS

Antonis Mygiakis

Mavrommataion 39

104 34 Athens

Greece

Tel: +30 210 619 9058

E-mail: a.mygiakis@clmsuk.com

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

GMV Aerospace and Defence

Almudena Sánchez González

Calle Isaac Newton 11

28760 Tres Cantos

Spain

Tel: +34 91 807 2100

E-mail: asanchez@gmv.com

OTE

Theodoros E. Mavroeidakos

99 Kifissias Avenue

151 24 Athens

Greece

Tel: +30 697 814 7618

E-mail: tmavroeid@ote.gr

SWAT.Engineering

Davy Landman

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 633754110

E-mail: davy.landman@swat.engineering

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of L’Aquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univaq.it

University of Namur

Anthony Cleve

Rue de Bruxelles 61

5000 Namur

Belgium

Tel: +32 8 172 4963

E-mail: anthony.cleve@unamur.be

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Volkswagen

Behrang Monajemi

Berliner Ring 2

38440 Wolfsburg

Germany

Tel: +49 5361 9-994313

E-mail: behrang.monajemi@volkswagen.de

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Document Structure 02.06.2020

0.2 First Content 02.06.2020

0.3 Content update 16.06.2020

0.4 Content ready for internal review 18.06.2020

0.5 Internal review comments integrated and ready for external review 29.06.2020

0.6 Integration of external review 07.07.2020

1.0 Final version 09.07.2020

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page iv Version 1.0 9 July 2020

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 6

1.1 Overview .. 6

1.2 Polystore Overview ... 6

1.3 Structure of the Document ... 7
2. Usage of TyphonDL Tools .. 7

2.1 TyphonDL Templates... 7

2.2 TyphonDL Wizard ... 9

2.3 TyphonDL Editor ... 16

2.4 TyphonDL Script Generation and running the Polystore .. 17
2.4.1 Container.name ... 18
2.4.2 Container.Ports.. 18
2.4.3 Container.Resources ... 18
2.4.4 Container.Replication ... 19
2.4.5 Container.Networks .. 20
2.4.6 Container.Volumes ... 20
2.4.7 Container.Properties and DB.Properties ... 21
2.4.8 DB.Credentials .. 21
2.4.9 DB.IMAGE ... 22
2.4.10 DB.Environment ... 22
2.4.11 DB.external ... 22
2.4.12 DB.URI ... 22
2.4.13 DB.HelmList ... 22

3. Implementation ... 23

3.1 TyphonDL Templates... 23

3.2 TyphonDL Creation Wizard .. 23

3.3 TyphonDL Script Generator .. 23
4. Conclusion ... 24
5. Bibliography .. 28
6. Annex I – template.xml ... 29

TABLE OF FIGURES

Figure 1: TyphonDL DB Template preferences ... 8
Figure 2: TyphonDL Creation Wizard: page one ... 10
Figure 3: TyphonDL Creation Wizard: Configuring the Analytics component Docker Compose vs. Kubernetes) 11
Figure 4: TyphonDL Creation Wizard: Choosing the DBMS for each database (Docker Compose vs. Kubernetes) 12
Figure 5: TyphonDL Creation Wizard: Further database configuration (MariaDB container vs. MongoDB container). 12
Figure 6: TyphonDL Creation Wizard: Further database configuration (MongoDB external database vs. MariaDB

Galera Cluster). ... 13
Figure 7: TyphonDL textual editor with syntax highlighting and auto completion .. 17

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable presents the work done in Task T3.4 Assembly of Optimised Hybrid

Polystore VMs from Deployment Models. This task produces tools for generating

installation and configuration scripts for deploying modelled hybrid polystores by

targeting selected virtual machine image assembly technologies. The generation of the

VMs assembly is optimized by taking into account both the characteristics of the

modelled polystores, and the considered deployment contexts, e.g., hardware

configuration, costs, workloads, performance, costs, and storage size. The produced

virtual machines are directly deployable on cloud infrastructure.

This deliverable presents the tools able to generate configuration scripts to assemble

Hybrid polystore VMs from source TyphonDL models. Also, the modelling tools

supporting the creation of TyphonDL models are presented.

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 6 Version 1.0 9 July 2020

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

This deliverable, D3.5, presents the work done in Task T3.4 Assembly of Optimised

Hybrid Polystore VMs from Deployment Models and is the final version of the

deliverable D3.2 TyphonDL Tools (TYPHON Consortium, 2018). This task has

produced tools for generating installation and configuration scripts for deploying

modelled hybrid polystores by targeting selected virtual machine image assembly

technologies. The generation of the VMs assembly is optimized by taking into account

both the characteristics of the modelled polystores, and the considered deployment

contexts, e.g., hardware configuration, costs, workloads, performance, costs, and

storage size. The produced virtual machines are directly deployable on cloud

infrastructure.

This deliverable presents the tools able to generate configuration scripts to assemble

Hybrid polystore VMs from source TyphonDL models. Also, the modelling tools

supporting the creation of TyphonDL models are presented.

The chosen technology for virtualising the polystore components is Docker
1
 containers,

used either with Docker Compose
2
, Docker Swarm

3
 or Kubernetes

4
.

1.2 POLYSTORE OVERVIEW

The Polystore - and therefore the TyphonDL model - consists of the following

components:

 Typhon API

 Typhon UI

 Typhon Metadata Database

 Typhon QL

 Optional Typhon Analytics

 The User Databases

The user is only able to edit the DL model for the user databases and the analytics

component, the other configuration parameters are provided by the respective

components and are not editable.

To create a Polystore, the TyphonDL Tools generate a TyphonDL model from a given

TyphonML (or ML) model. After completing the TyphonDL (or DL) model, scripts are

generated and the Polystore is started. When the Polystore is started, the ML and DL

1
 https://www.docker.com/

2
 https://docs.docker.com/compose/

3
 https://docs.docker.com/engine/swarm/

4
 https://kubernetes.io/

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 7

Confidentiality: Public Distribution

model are uploaded to the Typhon Metadata Database automatically. The Typhon API

parses the DL model and provides the other components with connection information

about all Polystore components. This way the DL model contains “addresses” to all the

Polystore components.

This procedure will be explained in more detail in the following sections.

1.3 STRUCTURE OF THE DOCUMENT

The document is organised as follows:

 Section 2 presents the description of usage of the TyphonDL tools that help

create a TyphonDL model and generate deployment scripts.

 Section 3 shortly describes the implementation of the TyphonDL tools.

 Section 4 presents the conclusion of the document.

The Typhon Deployment Language concepts, presented in D3.4 Hybrid Polystore

Deployment Language (Final Version) (TYPHON Consortium, 2020) will be used and

therefore not further explained in the present document.

2. USAGE OF TYPHONDL TOOLS

In this section the usage of the modelling tools including script generation is presented.

After creating a TyphonML model with the help of the TyphonML modelling tools (

(TYPHON Consortium, D3.2 TyphonDL Modeling Tools, 2019) and (TYPHON

Consortium, 2019)) a TyphonDL model can be created with the help of the TyphonDL

Wizard (see 2.2) from the ML model. The wizard uses the previously defined (default

or use-case specific) templates (see 2.1) and creates a TyphonDL model file and

additional model files for every database that can be edited with the textual and/or

graphical editor (see 2.3). When the DL model is ready, the TyphonDL Script Generator

can be used to generate technology dependent deployment scripts (see 2.4).

For the general reability of this section, TyphonDL meta-class objects, presented using

the font font, can be revisited in D3.4, Hybdrid Polystore Deployment Language

(Final Version) (TYPHON Consortium, 2020).

2.1 TYPHONDL TEMPLATES

The TyphonDL plugin comes with a set of default DB and DBType templates, that can

be viewed, imported, exported and edited in Eclipse → Window → Preferences →

TyphonDL → Templates (see Figure 1). Here, additional templates can be added, or

company specific DB settings can be defined and used for creating a new Polystore

deployment.

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 8 Version 1.0 9 July 2020

Confidentiality: Public Distribution

Figure 1: TyphonDL DB Template preferences

The default DB Templates include:

 MariaDB with DBType MariaDB
5
 containing Credentials with username =

root and a password to be set by the user.

 Mongo with DBType Mongo
6
 containing Credentials with username and

password to be set by the user.

 Cassandra with DBType Cassandra
7
 containing an Environment to set the

maximum heap size and the amount of heap memory allocated to newer objects
8
.

 Neo4j with DBType Neo4j
9
 containing Credentials with username = neo4j

and a password to be set by the user.

 HelmMariaDB with DBType MariaDB containing a HelmList10 using

bitnami/mariadb
11

 and Credentials with username = root and a password to

be set by the user.

 HelmMariaDBGalera with DBType mariadbgalera containing a HelmList

using bitnami/mariadb-galera
12

 and Credentials with username = root and a

password to be set by the user.

5
 https://hub.docker.com/_/mariadb

6
 https://hub.docker.com/_/mongo

7
 https://hub.docker.com/_/cassandra

8
 https://docs.datastax.com/en/ddac/doc/datastax_enterprise/operations/opsConHeapSize.html

9
 https://hub.docker.com/_/neo4j

10
 A HelmList includes the helm repository’s name and address, and the helm chart’s name, see [2].

11
 https://github.com/bitnami/charts/tree/master/bitnami/mariadb

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 9

Confidentiality: Public Distribution

 HelmMongo with DBType Mongo containing a HelmList using

bitnami/mongodb
13

 and Credentials with username=root and a password to

be set by the user.

 HelmMongoSharded with DBType mongoshareded containing a HelmList

using bitnami/mongodb-sharded
14

 and Credentials with username=root and

a password to be set by the user.

 HelmCassandra containing a HelmList using bitnami/cassandra
15

 and

Credentials with username and password to be set by the user.

 HelmNeo4j containing a HelmList using neo4j-helm
16

 and Credentials with

username=neo4j and a password to be set by the user.

2.2 TYPHONDL WIZARD

To create a TyphonDL model from a TyphonML model the TyphonDL Wizard has to

be started by selecting the given ML model and selecting Create TyphonDL model in

the Typhon context menu (see D3.2 (TYPHON Consortium, 2018)).

On the first page of the wizard (see Figure 2) the name for the TyphonDL model has to

be entered and a deployment technology such as Docker Compose, or Kubernetes has to

be chosen from a dropdown menu. The selected technology will be included in the

model in the form of Clustertype which is used when defining a Cluster:

 clustertype DockerCompose

 cluster clusterName: DockerCompose …

The Analytics component (TYPHON Consortium, 2019) can be activated and

deployment scripts can be created to either run it alongside the other Polystore

components, or to run it on a different machine. An already running Analytics

component can also be added to the model by giving its URI. For the UI to be reachable

by the API, the API URI (consisting of host and port) has to be given to the Wizard. If

Swarm Mode or Kubernetes is used, it is possible to scale the stateless parts of the

Polystore, i.e. the API and the QL server.

12

 https://hub.helm.sh/charts/bitnami/mariadb-galera
13

 https://github.com/bitnami/charts/tree/master/bitnami/mongodb
14

 https://hub.helm.sh/charts/bitnami/mongodb-sharded
15

 https://hub.helm.sh/charts/bitnami/cassandra
16

 https://github.com/neo4j-contrib/neo4j-helm

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 10 Version 1.0 9 July 2020

Confidentiality: Public Distribution

Figure 2: TyphonDL Creation Wizard: page one

If the Analytics component is to be generated, an optional page (see Figure 3) appears

after the first one. Here, the Analytics component can be configured.

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 11

Confidentiality: Public Distribution

Figure 3: TyphonDL Creation Wizard: Configuring the Analytics component Docker Compose vs. Ku-
bernetes)

TyphonML provides an XMI representation of the ML model that is parsed by the

TyphonDL Wizard and that filters out the databases to be deployed by TyphonDL. For

each database the second page of the wizard (see Figure 4) provides the possibility to

choose one of the following options:

1. Use a pre-existing DB model file
17

 if a file with the name <databasename>.tdl

exists in the project folder.

2. Create a new DB model object by choosing a template (shown in 2.1) from the

drop down menu.

3. Use an existing externally running database. A DB model object with the flag

external, an URI and the DBType of the selected template is created.

4. If Kubernetes is chosen on the first page, the option to use a Helm Chart
18

 is

added. Here, one of the templates already containing a HelmList should be

chosen, their names all start with “Helm”. Otherwise a new default HelmList

using bitnami
19

 as Helm Repo is created.

In each of the above cases, the resulting DB model object is cached in the Creation

Wizard for further configuration on the next pages.

17

 (examples in Listing 3, Listing 4 and Listing 5)
18

 https://hub.helm.sh/
19

 https://bitnami.com/stacks/helm

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 12 Version 1.0 9 July 2020

Confidentiality: Public Distribution

Figure 4: TyphonDL Creation Wizard: Choosing the DBMS for each database (Docker Compose vs. Ku-
bernetes)

In Figure 5 two example DB configurations are shown. If the DB is not set to external, a

Container model object for each database is created and cached together with the DB

object in the Wizard. The Container gets an URI object with the value

<containerName>:<containerPort>. This URI is parsed by the API to know where to

reach each database.

Figure 5: TyphonDL Creation Wizard: Further database configuration (MariaDB container vs. MongoDB
container).

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 13

Confidentiality: Public Distribution

On the left side of Figure 5 database settings for VehicleMetadataDB are presented. The

previously chosen DBType is shown on the top of the page – here MariaDB (compare to

Figure 4). The template (see Figure 1) has a given username (root) and only allows to

choose the password. The Wizard provides the possibility to generate a 16 digit

password containing small and capital letters and numbers. If a different image version

should be used, it can be defined in the “Image used” group. Next, container resources

can be defined by checking the respective checkboxes. This will add a Resources

object to the Container. CPU is measured in CPU units, given as the fragment of

available processing time (0.2 = 20%). Memory is measured in bytes and is expressed

as integer using one of these suffixes: T, G, M, K. It’s possible - though not

recommended in production - to publish a database container with a given “Published

Port” in the “Ports” group. This will add a Ports object to the Container.

On the left side of Figure 5, the MongoDB TextWarningData can be configured. Here,

both username and password can be chosen. Additionally, to the options above, it’s

allowed to replicate the MongoDB
20

 if Docker Compose is used. If the

Primary/Secondary option is chosen, a Replication object is added to the

Container. The number of total Replicas denotes the number of additionally created

containers (see 3.3).

On the left side of Figure 6, the database settings for VehicleDataDB, an external

MongoDB (compare with the checkbox in Figure 4:left) are presented. Additionally, to

setting the Credentials, the user has to give an URI pointing to the database in the

“Database Address” group.

An example for using Helm charts in the DB AppData (compare with the checkbox in

Figure 4:right) is given on the right side of Figure 6. The template for MariaDB Galera

(see 2.1) already contains the repository settings. The user can specify the use of a

custom values file. If the valuesFile field contains the repository name (here “bitnami”),

the default values provided by the chart are taken
21

.

Figure 6: TyphonDL Creation Wizard: Further database configuration (MongoDB external database vs.
MariaDB Galera Cluster).

When the wizard is finished, the following TyphonDL files get added to the project:

20

 https://docs.mongodb.com/manual/replication/
21

 E.g. https://github.com/bitnami/charts/blob/master/bitnami/mariadb-galera/values.yaml

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 14 Version 1.0 9 July 2020

Confidentiality: Public Distribution

 TyphonDL model file with the name that was given in the wizard (examples in

Listing 1 using Docker Compose and Listing 2 using Kubernetes).

 Properties file needed to generate deployment scripts (see 3.3 for more details).

 One model file for each database (examples in Listing 3, Listing 4 and Listing

5).

 One model file containing the DBTypes (example in Listing 6).

import weatherModel.xmi
import VehicleMetadataDB.tdl
import AppData.tdl
import TextWarningData.tdl
import VehicleDataDB.tdl
import dbTypes.tdl
containertype Docker
clustertype DockerCompose
platformtype localhost
platform platformName : localhost {
 cluster clusterName : DockerCompose {
 application Polystore {
 container vehiclemetadatadb : Docker {
 deploys VehicleMetadataDB
 ports {
 target = 3306 ;
 published = 35201 ;
 }
 resources {
 limitCPU = 0.5 ;
 limitMemory = 512M ;
 reservationCPU = 0.25 ;
 reservationMemory = 256M ;
 }
 uri = vehiclemetadatadb:3306 ;
 }
 container appdata : Docker {
 deploys AppData
 uri = appdata:3306 ;
 }
 container textwarningdata : Docker {
 deploys TextWarningData
 uri = textwarningdata:27017 ;
 replication {
 replicas = 3 ;
 mode = replicaSet ;
 }
 }
 }
 }
}

Listing 1: Main model file deploymentModel.tdl generated by the TyphonDL Creation Wizard using
Docker Compose

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 15

Confidentiality: Public Distribution

import weatherModel.xmi
import AppData.tdl
import TextWarningData.tdl
import VehicleMetadataDB.tdl
import VehicleDataDB.tdl
import dbTypes.tdl
containertype Docker
clustertype Kubernetes
platformtype minikube
platform platformName : minikube {
 cluster clusterName : Kubernetes {
 application Polystore {
 container appdata : Docker {
 deploys AppData
 uri = appdata:3306 ;
 }
 container textwarningdata : Docker {
 deploys TextWarningData
 uri = textwarningdata:27017 ;
 }
 container vehiclemetadatadb : Docker {
 deploys VehicleMetadataDB
 ports {
 target = 3306 ;
 published = 3306 ;
 }
 resources {
 limitCPU = 0.5 ;
 limitMemory = 512M ;
 reservationCPU = 0.25 ;
 reservationMemory = 256M ;
 }
 uri = vehiclemetadatadb:3306 ;
 }
 }
 }
}

Listing 2: Main model file deploymentModel.tdl generated by the TyphonDL Creation Wizard using
Kubernetes

database AppData : MariaDB {
 credentials {
 username = root ;
 password = zRcUgpmgcBmZuSSI ;
 }
}

Listing 3: AppData.tdl containing the password created in the Wizard

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 16 Version 1.0 9 July 2020

Confidentiality: Public Distribution

external database VehicleDataDB : Mongo {
 uri = https://example.com:32384 ;
 credentials {
 username = mainUser ;
 password = yG7w4djhIg1F2ZI3 ;
 }
}

Listing 4: VehicleDataDB.tdl is an external database which is not deployed by a container in the main
model file

database AppData : mariadbgalera {
 helm {
 repoName = bitnami ;
 repoAddress = https://charts.bitnami.com/bitnami ;
 chartName = mariadb-galera ;
 valuesFile = appdata/values.yaml ;
 }
 credentials {
 username = root ;
 password = ell8qy43MvnwxFEa ;
 }
}

Listing 5: AppData.tdl when using a Helm Chart and giving a custom values file

dbtype MariaDB {
 default image = mariadb:latest;
}
dbtype Mongo {
 default image = mongo:latest;
}

dbtype mariadbgalera {
 default image = bitnami/mariadb-galera;
}

Listing 6: dbtypes.tdl

2.3 TYPHONDL EDITOR

Xtext provides a textual editor with syntax highlighting, auto completion and an outline

view. If the project that includes the models holds an Xtext nature, the TyphonDL

Creation Wizard automatically adds it to the project, and linking between files shown in

Figure 7 is also provided.

The TyphonDL Creation Wizard already creates a valid TyphonDL model,

comprehensive enough to generate polystore deployment scripts, but the user can still

add additional information. When Kubernetes is chosen, the Platformtype is

automatically set to “minikube
22

”, a testing environment. A different Platform Type can

easily be used by changing the value of Platformtype and adding a “kubeconfig”

Key_Values to the Cluster. The “kubeconfig” file can be downloaded from the cluster

provider. An example for using AWS is shown in Listing 7.

22

 https://kubernetes.io/docs/setup/learning-environment/minikube/

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 17

Confidentiality: Public Distribution

platformtype AWS
platform platformName : AWS {
 cluster clusterName : Kubernetes {
 kubeconfig = /path/to/downloaded/kubeconfig.yaml;

Listing 7: Changing the Platformtype and providing a kubeconfig file

Figure 7: TyphonDL textual editor with syntax highlighting and auto completion

2.4 TYPHONDL SCRIPT GENERATION AND RUNNING THE POLYSTORE

To create deployment scripts the TyphonDL Script Generator has to be started by

selecting the created and completed DL model (main model file) and choosing Generate

Deployment Scripts in the TyphonDL context menu. A folder with the name of the DL

model is generated. It contains all files necessary to run the Polystore deployment.

1. If Docker Compose was chosen, a Service is created for every database and the

Polystore can be started by running:

 $ docker-compose up -d

If the DL model contains Resources, the Polystore has to be started by running

 $ docker stack deploy

with Docker running in Swarm Mode. Otherwise the resource definition is

ignored. The user can also setup Docker in Swarm Mode using multiple worker

nodes and deploy the Polystore as a stack
23

.

23

 https://docs.docker.com/engine/swarm/stack-deploy/

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 18 Version 1.0 9 July 2020

Confidentiality: Public Distribution

2. If Kubernetes was chosen, a Deployment and a Service to connect to the Pod(s)

created by the Deployment is created for every database and the Polystore can

be started by executing:

 $ sh deploy.sh

The following sections contain example model objects and other properties set in the

TyphonDL Creation Wizard and their impact on the generated Docker Compose and/or

Kubernetes deployment scrips. The changes to the deployment script by adding or

changing the model object are marked bold.

2.4.1 Container.name

The name of a Container is used for internal service discovery. It is part of the

generated Container.URI, which the API uses to find all databases. The URI consists

of the name of the container and the image’s target port.

Model Docker Compose Kubernetes

container appdata : Docker

{…}
services:

 appdata:

 …

kind: Service

apiVersion: v1

metadata:

 name: appdata

2.4.2 Container.Ports

By default the created TyphonDL models don’t contain a Ports object. It can be added

to publish a container/service:

Model Docker Compose Kubernetes

ports {

 target = 3306 ;
 published = 32123 ;
}

ports:

 - target: 3306

 published: 32123

kind: Service

apiVersion: v1

metadata:

 name: appdata

spec:

 type: NodePort

 ports:

 - port: 3306

 targetPort: 3306

 nodePort: 32123

 selector:

 app: appdata-pod

2.4.3 Container.Resources

Model Docker Compose Kubernetes

resources {

 limitCPU = 0.5;

 limitMemory = 512M;

 reservationCPU = 0.25;

 reservationMemory = 256M;

}

deploy:

 resources:

 limits:

 cpus: '0.5'

 memory: 512M

 reservations:

 cpus: '0.25'

 memory: 256M

resources:

 limits:

 memory: "512M"

 cpu: "0.5"

 requests:

 memory: "256M"

 cpu: "0.25"

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 19

Confidentiality: Public Distribution

2.4.4 Container.Replication

Model Docker Compose Kubernetes

In a MongoDB container:

replication {

 replicas = 3 ;

 mode = replicaSet ;

}

vehicledatadb:

 image: mongo:latest

 command: mongod --replSet vehicledatadbReplset

vehicledatadb-replica1:

 image: mongo:latest

 command: mongod --replSet vehicledatadbReplset

vehicledatadb-replica2:

 image: mongo:latest

 command: mongod --replSet vehicledatadbReplset

vehicledatadb-replica3:

 image: mongo:latest

 command: mongod --replSet vehicledatadbReplset

vehicledatadb-rsinit:

 build:

 context: .

 dockerfile: vehicledatadb/rsinit

 entrypoint: [

 'sh',

 '-c',

 'init_set.sh'

]

Also a Dockerfile called rsinit in the folder vehicledatadb:
FROM mongo

ADD vehicledatadb/init_set.sh /usr/local/bin/

RUN chmod +x /usr/local/bin/init_set.sh

And a file to initiate the MongoDB ReplicaSet:
echo "sleeping for 10 seconds"

sleep 10

echo init_set.sh time now: `date +"%T" `

mongo --host vehicledatadb:27017 <<EOF

 var cfg = {

 "_id": "vehicledatadbReplset",

 "version": 1,

 "members": [

 {

 "_id": 0,

 "host": "vehicledatadb:27017"

 }

 ,{

 "_id": 1,

 "host": "vehicledatadb-replica1:27017"

 }

 ,{

 "_id": 2,

 "host": "vehicledatadb-replica2:27017"

 }

 ,{

 "_id": 3,

 "host": "vehicledatadb-replica3:27017"

 }

]

 };

 rs.initiate(cfg);

EOF

Not supported

Model Docker Compose
(only in Swarm Mode)

Kubernetes

In a stateless container:

replication {

 replicas = 3 ;

typhonql-server:

 deploy:

 mode: replicated

 replicas: 6

apiVersion: apps/v1

kind: Deployment

metadata:

 name: typhonql-server-

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 20 Version 1.0 9 July 2020

Confidentiality: Public Distribution

 mode = stateless ;

}

deployment

spec:

 replicas: 3

…

2.4.5 Container.Networks

The Networks object is used to introduce inside a container to specify the network it is

part of. Script generation of Networks generates the Docker Compose keyword

networks. For Kubernetes a new Kubernetes script kind for namespaces are manually

added with the matching network name <networkName>.

Model Docker Compose Kubernetes

networks <networkName>

networks:

 - <networkName>:

kind: Namespace

metadata:

 name: <networkName>

spec: {}

status: {}

2.4.6 Container.Volumes

The Volumes object allows the user to specify volumes parameters for the directories in

a container such as a volume name, mount path, volume type. Properties is used to

add other technology specific volume parameters.

Model Docker Compose Kubernetes

volumes {

 volumeName = <volumeName>;

 mountPath = <volumePath>;

 volumeType = <volumeType>;

 <Properties>

}

Outside of a Docker Compose

service

volumes:

 <volumeName>:

Outside of a Kubernetes

container

volumes:

 - name: <volumeName>

 <volumeType>:

 <Properties>

 Inside a Docker Compose

service

volumes:

 - type: <volumeType>

 source: <volumeName>

 target: <volumePath>

 <Properties>

Inside a Kubernetes con-

tainer

volumeMounts:

 - name: <volumeName>

 mountPath: <volumePath>

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 21

Confidentiality: Public Distribution

2.4.7 Container.Properties and DB.Properties

The Properties object allows the user to add additional database and container

specifications without the need to extend DL (e.g. adding a restart = always;
24

Key_Values object to a container).

Model Docker Compose Kubernetes

key = value; key: value key: value

keyValueList {

 key = value;

}

keyValueList:

 key: value

keyValueList:

 key: value

keyValueArray [

 value1, value2

]

keyValueArray:

 - value1

 - value2

keyValueArray:

 - value1

 - value2

2.4.8 DB.Credentials

The translation of the model object Credentials to the database credentials set in a

container’s environment is DBType dependent:

DBType DBTypeKey Username DBTypeKey Password

Mongo MONGO_INITDB_ROOT_USERNAME MONGO_INITDB_ROOT_PASSWORD

MariaDB - MYSQL_ROOT_PASSWORD

Neo4j - NEO4J_AUTH

Cassandra - -

In the following table, the DBTypeKeys are substituted by the DBType dependent keys

given in the table above.

Model Docker Compose Kubernetes

credentials {

 username = <username> ;

 password = <password> ;

}

environment:

 (<DBTypeKey>: <username>)

 <DBTypeKey>: <password>

environment:

 (- name: <DBTypeKey>

 value: <username>)

 - name: <DBTypeKey>

 value: <password>

If a Helm Chart is used, the Credentials are used in the install command (see

2.4.13):

DBType DBTypeKey Username DBTypeKey Password

Mongo/

Mongo-Sharded
- mongodbRootPassword

MariaDB/

MariaDB-

Galera

- rootUser.password

Neo4j - neo4jPassword

Cassandra dbUser.user dbUser.password

24

 https://docs.docker.com/compose/compose-file/#restart

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 22 Version 1.0 9 July 2020

Confidentiality: Public Distribution

With this TyphonDL feature, the API is able to read the database credentials from the

DL model without having to know about DBMS dependent syntax.

2.4.9 DB.IMAGE

If the DB contains already an IMAGE object, then this object is used over the

DBType.IMAGE object.

2.4.10 DB.Environment

Model Docker Compose Kubernetes

environment {

 MYSQL_DATABASE = admin;

}

environment:

 MYSQL_ROOT_PASSWORD:

nR6dupglQ4FROOGWQ

 MYSQL_DATABASE: admin

environment:

 - name:

MYSQL_ROOT_PASSWORD

 value: ADpmYZCED5xiAFSZ

 - name: MYSQL_DATABASE

 value: admin

If the DB has Credentials, the Environment gets added to the environment.

2.4.11 DB.external

If a DB is set external, no deployment scripts are generated.

2.4.12 DB.URI

The URI of a DB is only set if the DB is external, so that the API can find the

database.

2.4.13 DB.HelmList

Helm charts can only be used with Kubernetes. The “helm install” command depends

on the helm chart used. The HelmList contains a repoName, a repoAddress and a

chartName. It gets translated to:

$ helm repo add repoName repoAddress

$ helm install Container.name --set fullnameOverride=Container.name
<setAdditions> repoName/chartName -n typhon

The <setAdditions> are DBType dependent and mainly contain Credentials:

DBType <setAdditions>

Mongo/

Mongo-

Sharded

--set mongodbRootPassword=<DB.credentials.password>

MariaDB/

MariaDB-

Galera

--set rootUser.password=<aDB.credentials.password>

Neo4j --set acceptLicenseAgreement=yes --set neo4jPassword=<DB.credentials.password>

Cassandra
-set

dbUser.user=<DB.credentials.username>,dbUser.password=<DB.credentials.password>

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 23

Confidentiality: Public Distribution

If a Key_Values valuesFile=pathToValues.yaml is given (see Figure 6), then it is

added to the helm install command.

3. IMPLEMENTATION

The first version of the tools’ implementation
25

 as Eclipse plugin was described in D3.2

(TYPHON Consortium, 2018) and is continued and completed here as the full prototype

of the TyphonDL tools’ implementation.

3.1 TYPHONDL TEMPLATES

The TyphonDL Templates are implemented by creating XtextTemplatePreferencePages

provided by the Xtext plugin
26

. Default templates are provided in a templates.xml

file
27

(see Annex I – template.xml).

3.2 TYPHONDL CREATION WIZARD

The TyphonDL Creation Wizard
28

 is implemented as an org.eclipse.jface.Wizard (see
section 2.2, Figure 2 to Figure 6).

3.3 TYPHONDL SCRIPT GENERATOR

Before Acceleo
29

 is used to generate the deployment scripts (as described in D3.2), the

Polystore components (see 1.2) need to be added to the model. If the Analytics

component is to be used with Kubernetes, Flink and Kafka deployment files are

downloaded
30

 and included in the project.

To upload the ML and DL model to the Typhon Metadata Database (which is a

MongoDB database) automatically when using Docker Compose, a JavaScript file

containing a mongo.insert(MLModel, DLModel) statement is created. By mounting that

file’s directory to the container’s docker-entrypoint-initdb.d it gets executed when the

container is first started. To add the models when using Kubernetes, a Job
31

 containing

the mongo.insert(MLModel, DLModel) statement is created.

After every Polystore component is added to the model
32

, the deployment scripts get

generated by using Acceleo
33

.

A full deployment example can be found in the Typhon github repository, both for

Docker Compose/Swarm
34

 and Kubernetes
35

.

25

 https://github.com/typhon-project/typhondl
26

 https://www.eclipse.org/Xtext/
27

 https://github.com/typhon-project/typhondl/blob/master/de.atb.typhondl.xtext.ui/templates/templates.xml
28

 https://github.com/typhon-

project/typhondl/tree/master/de.atb.typhondl.xtext.ui/src/de/atb/typhondl/xtext/ui/creationWizard
29

 https://www.eclipse.org/acceleo/
30

 http://typhon.clmsuk.com/static/analyticsKubernetes.zip
31

 https://kubernetes.io/docs/concepts/workloads/controllers/job/
32

 Happens here: https://github.com/typhon-

project/typhondl/blob/master/de.atb.typhondl.acceleo/src/de/atb/typhondl/acceleo/services/Services.java
33

 https://github.com/typhon-project/typhondl/tree/master/de.atb.typhondl.acceleo/src/de/atb/typhondl/acceleo/files

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 24 Version 1.0 9 July 2020

Confidentiality: Public Distribution

4. CONCLUSION

This document presented the work done in the TYPHON project in WP3, in particular

in T3.4 Assembly of Optimised Hybrid Polystore VMs from Deployment Models.

The following Table 1 presents an overview of the requirements defined for TyphonDL

in D1.1 and their implementation status.

Table 1: Overview of technology requirements and their implementation status

ID Requirement Priority Status

12 TyphonDL models shall allow for specification of

the components in deployment configuration.

SHALL Implemented

13 TyphonDL models shall allow for specification of

interplay between components in deployment

configuration.

SHALL Implemented

14 TyphonDL models shall allow for specification of

deployment operations on the components.

SHALL Implemented

15 TyphonDL shall be adaptable to the de facto

standard virtual image configuration technique

Docker.

SHALL Implemented

16 TyphonDL models shall allow for the definition of

deployment properties.

SHALL Implemented

17 TyphonDL shall allow for the definition of

individual nodes.

SHALL Implemented

18 TyphonDL shall allow for the definition of

standard configuration concepts.

SHALL Implemented

19 The Hybrid Polystore Deployment shall support

scalability to large amounts of data.

SHALL Implemented

(using

Kubernetes)

20 The Hybrid Polystore Deployment component

shall develop tools and services to define (and

edit) deployment specifications.

SHALL Implemented

21 TyphonDL should support templates for creation

of Polystore Deployments.

SHOULD Implemented

22 TyphonDL should allow defining the level of

redundancy for the database instance so that some

SHOULD Implemented

for some

34

 https://github.com/typhon-project/typhondl/tree/master/demo.compose
35

 https://github.com/typhon-project/typhondl/tree/master/demo.kubernetes

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 25

Confidentiality: Public Distribution

ID Requirement Priority Status

consistency checks on the data can be supported. DBMS

23 The Polystore Deployment should be compatible

with several cloud platform providers.

SHOULD Implemented

for cloud

platforms

supporting

Docker

24 TyphonDL should allow for the definition of

collection/cluster of nodes

SHOULD Implemented

25 TyphonDL may be adaptable to other virtual

image configuration techniques.

MAY The tools are

prepared to

be extended

Prototype

implementati

on is for

Docker/Kube

rnetes

26 TyphonDL may support heterogeneous cloud

platforms.

MAY Implemented

27 The hybrid polystore shall support the deployment

and execution of text processing pipelines.

SHALL Part of Ana-

lytics De-

ployment

Table 2: Overview of industrial use case requirements and their implementation status

ID Requirement Priority Status

40 The polystore deployment shall work with at least

two containerization solutions

SHALL Implemented

41 The polystore deployment should generate

containers using Docker

SHOULD Implemented

42 The outcome of the polystore deployment shall be

containers ready to run without further

configuration needed

SHALL Implemented

43 The generated virtualized containers shall be

tested in environments of at least two major online

cloud providers: AWS, Google Cloud, Microsoft

Azure, etc.

SHALL Implemented

44 The containers shall automatically start the

database nodes instance without human

SHALL Implemented

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 26 Version 1.0 9 July 2020

Confidentiality: Public Distribution

ID Requirement Priority Status

intervention

45 It should be possible to duplicate containers and

boot them as additional nodes of the database

instance without the need to modify the

configuration

SHOULD Implemented

using

Kubernetes

46 The polystore deployment should work with

existing relational databases

SHOULD Implemented

This document serves as description of this implementation given that the result of this

task is actually the developed software (uploaded in GitHub). The present report

documents the implementation of the TyphonDL tools. In particular it highlights the

usage and implementation of the TyphonDL tools: Templates, Wizard, Editor, and

Script Generation.

The first usage and testing of the TyphonDL tools have shown strengths and limitations

of the prototype developed up to now:

 Strengths:

 The TyphonDL tools are easy to use. The user does not have to be an

Eclipse expert, a Kubernetes expert or a Docker expert to create deployment

scripts.

 Company specific database settings can be easily given by editing the

TyphonDL Templates.

 Two possible container options (Doker and Kubernetes) that cover/represent

the majority of the approaches currently used in industry and is ready to be

extended to further needed operations.

 Limitations:

 Scaling databases in containers to adapt to large amounts of data is not

straight forward. Using Helm Charts is a good solution for this difficult task.

The Helm Charts can be configured by giving a custom values.yaml, this is

not included in the TyphonDL plugin.

The outlook for the TyphonDL tools has several objectives:

 In a near future, within the Typhon project lifetime, the TyphonDL tools will be

further optimised based on the use case evaluation test.

 In the medium to long future, the TyphonDL follows the Typhon project Open

Source Strategy and will be therefore published in a github repository to be

available to the wider community. ATB plans to offer customisation services to

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 27

Confidentiality: Public Distribution

the DL toolset. Tied to this, ATB as Eclipse Associate member will use this

connection within the Eclipse community to further exploit the DL toolset.

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 28 Version 1.0 9 July 2020

Confidentiality: Public Distribution

5. BIBLIOGRAPHY

Budinsky, Steinberg, Merks, Ellersick, & Grose. (2003). Eclipse Modelling Framework: a developer’s guide. . Boston

M.A.: Addison-Wesley.
TYPHON Consortium. (2018). D3.2 TyphonDL Tools.

TYPHON Consortium. (2019). D2.5 TyphonML Model Analysis and Reasoning Tools.

TYPHON Consortium. (2019). D3.2 TyphonDL Modeling Tools.

TYPHON Consortium. (2019). D5.5 Event Publishing and Monitoring Architecture (Final Version) .

TYPHON Consortium. (2019). D6.3 Hybrid Polystore Data Migration Tools.

TYPHON Consortium. (2019). D7.2 Integrated Platform - Interim Version.

TYPHON Consortium. (2020). D3.4 Hybrid Polystore Deployment Language (Final Version).

 D3.5 Optimised Hybrid Polystore VM Assembly Tools

9 July 2020 Version 1.0 Page 29

Confidentiality: Public Distribution

6. ANNEX I – TEMPLATE.XML

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

 <templates>

 <template id="dbType_mariadb" autoinsert="true" con-

text="de.atb.typhondl.xtext.TyphonDL.DBType" deleted="false" description="Default template

for dbtype MariaDB using the latest image from Docker Hub" enabled="true"

name="MariaDBType">dbtype MariaDB {

 default image = mariadb:latest;

 }</template>

 <template id="dbType_mongo" autoinsert="true" con-

text="de.atb.typhondl.xtext.TyphonDL.DBType" deleted="false" description="Default template

for dbtype Mongo using the latest image from Docker Hub" enabled="true"

name="MongoType">dbtype Mongo {

 default image = mongo:latest;

 }</template>

 <template id="dbType_mysql" autoinsert="true" con-

text="de.atb.typhondl.xtext.TyphonDL.DBType" deleted="false" description="Default template

for dbtype MySQL using the latest image from Docker Hub" enabled="true"

name="MySQLType">dbtype MySQL {

 default image = mysql:latest;

 }</template>

 <template id="dbType_cassandra" autoinsert="true" con-

text="de.atb.typhondl.xtext.TyphonDL.DBType" deleted="false" description="Default template

for dbtype Cassandra using the latest image from Docker Hub" enabled="true"

name="Cassandra">dbtype Cassandra {

 default image = cassandra:latest;

 }</template>

 <template id="dbType_neo4j" autoinsert="true" con-

text="de.atb.typhondl.xtext.TyphonDL.DBType" deleted="false" description="Default template

for dbtype Neo4j using the latest image from Docker Hub" enabled="true"

name="Neo4j">dbtype Neo4j {

 default image = neo4j:latest;

 }</template>

 <template id="db_mariadb" autoinsert="true" context="de.atb.typhondl.xtext.TyphonDL.DB"

deleted="false" description="default minimal template for MariaDB" enabled="true"

name="MariaDB">database ${databaseName} : MariaDB {

 environment {

 MYSQL_ROOT_PASSWORD = ${password} ;

 }

 }

 </template>

 <template id="db_mongo" autoinsert="true" context="de.atb.typhondl.xtext.TyphonDL.DB"

deleted="false" description="default minimal template for Mongo" enabled="true"

name="Mongo">database ${databaseName} : Mongo {

D3.5 Optimised Hybrid Polystore VM Assembly Tools

Page 30 Version 1.0 9 July 2020

Confidentiality: Public Distribution

 environment {

 MONGO_INITDB_ROOT_USERNAME = ${username} ;

 MONGO_INITDB_ROOT_PASSWORD = ${password} ;

 }

 }</template>

 <template id="db_mysql" autoinsert="true" context="de.atb.typhondl.xtext.TyphonDL.DB"

deleted="false" description="default minimal template for MySQL" enabled="true"

name="MySQL">database ${databaseName} : MySQL {

 environment {

 MYSQL_ROOT_PASSWORD = ${password} ;

 }

 }</template>

 <template id="db_cassandra" autoinsert="true" context="de.atb.typhondl.xtext.TyphonDL.DB"

deleted="false" description="default minimal template for Cassandra" enabled="true"

name="Cassandra">database ${name} : Cassandra {

 }</template>

 <template id="db_neo4j" autoinsert="true" context="de.atb.typhondl.xtext.TyphonDL.DB"

deleted="false" description="default minimal template for Neo4j" enabled="true"

name="Neo4j">database ${name} : Neo4j {

 environment {

 NEO4J_AUTH = neo4j/${password};

 }

 }</template>

 </templates>

