

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, Nea Odos, The Open Group, University of L’Aquila, University of Namur,
University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

TYPHON Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the TYPHON Project Partners.

Project Number 780251

D5.2 Data Event Organisation and
Representation Report

Version 1.0

18 December 2018
Final

Public Distribution

University of York

D5.2 Data Event Organisation and Representation Report

Page ii Version 1.0 18 December 2018

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Alpha Bank

Vasilis Kapordelis

40 Stadiou Street

102 52 Athens

Greece

Tel: +30 210 517 5974

E-mail: vasileios.kapordelis@alpha.gr

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Centrum Wiskunde & Informatica

Tijs van der Storm

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 9333

E-mail: storm@cwi.nl

CLMS

Antonis Mygiakis

Mavrommataion 39

104 34 Athens

Greece

Tel: +30 210 619 9058

E-mail: a.mygiakis@clmsuk.com

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

GMV Aerospace and Defence

Almudena Sánchez González

Calle Isaac Newton 11

28760 Tres Cantos

Spain

Tel: +34 91 807 2100

E-mail: asanchez@gmv.com

Nea Odos

Charalampos Daskalakis

Themistocleous 87

106 83 Athens

Greece

Tel: +30 210 344 7300

E-mail: cdaskalakis@neaodos.gr

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of L’Aquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univaq.it

University of Namur

Anthony Cleve

Rue de Bruxelles 61

5000 Namur

Belgium

Tel: +32 8 172 4963

E-mail: anthony.cleve@unamur.be

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Volkswagen

Behrang Monajemi

Berliner Ring 2

38440 Wolfsburg

Germany

Tel: +49 5361 9-994313

E-mail: behrang.monajemi@volkswagen.de

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 First draft 02/10/2018

0.2 Revised draft 29/10/2018

0.3 Event structure metamodel 12/11/2018

0.4 Code generation and analytics architecture discussion 20/11/2018

0.5 Changes based on feedback during the project meeting 05/12/2018

1.0 Final version after feedback from internal reviews 18/12/2018

D5.2 Data Event Organisation and Representation Report

Page iv Version 1.0 18 December 2018

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 Document Structure ... 1
2. Storage Instrumentation ... 1
3. Industry-wide Instrumentation .. 2

3.1 Overview .. 2

3.2 Oracle .. 3

3.3 MySQL ... 3

3.4 MongoDB .. 5

3.5 Neo4J ... 6

3.6 Redis .. 7
4. Data Analytics Events System Architecture ... 8

4.1.1 Events Flow .. 8
5. Data Analytics Events Structure .. 10

5.1 Metamodel ... 11

5.2 Analytics Scenarios ... 13

5.3 Use-Case Specific Scenarios ... 18
6. Java Code Generation... 19

6.1 Code Generation Process .. 19
7. Conclusions And Future Work .. 22
8. Bibliography .. 24

TABLE OF FIGURES

Figure 1: Analytics infrastructure architecture ... 8
Figure 2: Data event organization metamodel .. 10
Figure 3: Analytics scenarios database schema .. 13
Figure 4: Code generation process overview .. 19
Figure 5: Eclipse plugin that automates the generation of Java code from a TyphonML model 20

file://Users/thanoszolotas/Dropbox/TYPHON/Deliverables/D5.2/D5.2%20Data%20Event%20Organisation%20and%20Representation%20Report.docx%23_Toc533002878
file://Users/thanoszolotas/Dropbox/TYPHON/Deliverables/D5.2/D5.2%20Data%20Event%20Organisation%20and%20Representation%20Report.docx%23_Toc533002879
file://Users/thanoszolotas/Dropbox/TYPHON/Deliverables/D5.2/D5.2%20Data%20Event%20Organisation%20and%20Representation%20Report.docx%23_Toc533002880
file://Users/thanoszolotas/Dropbox/TYPHON/Deliverables/D5.2/D5.2%20Data%20Event%20Organisation%20and%20Representation%20Report.docx%23_Toc533002881
file://Users/thanoszolotas/Dropbox/TYPHON/Deliverables/D5.2/D5.2%20Data%20Event%20Organisation%20and%20Representation%20Report.docx%23_Toc533002882

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document extends the work described in deliverable D5.1 (Data Event Domain

Analysis Report) by investigating in more depth the structure of messages for events

triggered by stores and delivered through TyphonQL to be used for TYPHON analytics.

The document also provides an overview of the code generator used to actualize the

TyphonML and TyphonDL models into concrete implementation of the events to be

used by analytics. Finally, a discussion of the proposed analytics architecture is

presented.

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

Polystore-generated events are the main enabler for data analytics to be applied

concisely. The Data Event Organisation and Representation report (this document)

investigates the possible events required for analytics across the different TYPHON

stores and their structure. This report extends upon the Data Event Domain Analysis

report (Task 5.1).

We highlight current widely adopted relational and non-relational stores and we discuss

available implementation of instrumentation and tracing capabilities available for each

of them. Emphasis is given on the definition of a common data event metamodel, which

will define the structure of the generated events. In addition, a code generation approach

that is based on Model-driven Engineering (MDE) principles is presented, while its

implementation is discussed. The code generated by this automated approach will

facilitate both the construction of the events triggered by the polystores and the

development of analytics by analytics experts. Finally, a presentation of the proposed

analytics architecture is also discussed in this document. An interim version of this

architecture will be presented in the next deliverable (D5.3 – M18).

1.2 DOCUMENT STRUCTURE

The rest of document is organized as follows: Section 2 will address instrumentation

and tracing in databases as a general consideration for TYPHON. A discussion will be

further extended to performance considerations in Section 2. Section 3 will highlight

instrumentation used in existing storage systems. In Section 0, we present the event

publishing and monitoring architecture. In Section 5, we discuss the different events

that the TYPHON analytics platform expects and their structure. In Section 6, the code

generation approach is presented, while Section 7 concludes the work presented in this

document and outlines the next steps.

2. STORAGE INSTRUMENTATION

Instrumentation is a general term used to cover different aspects of monitoring system

behaviour. This can include code level tracing and debugging using logging messages to

higher level profiling to observe the system response at runtime, e.g. monitoring

memory leaks. We will use the term instrumentation unless otherwise required by the

context of the discussion. For storage systems, there is even more need for

instrumentation to fulfil several constraints in terms of data consistency, security and

analytics. Instrumentation can help identify the overall database performance as the

amount of data grows. Also, it can provide a mechanism by which system

administrators can detect actions applied on the database including ones that breach

security constraints.

TYPHON is interested in instrumenting different aspects of a polystore, which will help

tackling:

 Security: instrumenting actions applied on a polystore will help identifying

anomalous usage behaviour, which can help in halting malicious access to the

stored data.

D5.2 Data Event Organisation and Representation Report

Page 2 Version 1.0 18 December 2018

Confidentiality: Public Distribution

 Consistency: data consistency across different polystores can also be maintained

through instrumentation, by insuring that events generated from a single storage

node in a polystore are consistent with the rest of the system, e.g. generating a

pre-delete event in a relational database to ensure that there are no data

dependencies in other document or no-document databases present in the

polystore.

 Profiling: generated events can help in monitoring the polystore usage and

identify performance bottlenecks. Profiling the generated events can help also in

decisions related to the evolution of the hardware/software requirements to

sustain the sheer amount of data.

 Analytics: tracing the generated events can allow for custom detailed low-level

analytics of raw data inserted by the user, which can provide business insights

based on the nature of the data being processed.

3. INDUSTRY-WIDE INSTRUMENTATION

3.1 OVERVIEW

In the previous deliverable (D5.1), we presented an in-depth analysis of the different

kinds of events (e.g. pre-access, post-access, pre-update, post-update) that a TYPHON

polystore could publish in order to facilitate the development of orthogonal analytics

and monitoring services. In that analysis, we assessed six databases to identify

notifications that are triggered when data operations are executed. More specifically, we

categorised the databases into two distinct categories, i.e., relational and non-relational

databases (SQL and NoSQL). We then studied the most widely used databases for each

category based on a public database ranking index [1]. In particular, for relational

databases we assessed MySQL [1] and Oracle DBMS [2]. As different types of non-

relational databases exist, we assessed one for each the following four types: document

based (i.e., MongoDB [3]), key-value (i.e., Redis [4]), graph based (i.e., Noe4J [5]) and

column wide stores (i.e., Cassandra [6]). We then presented examples, for each of the

four industrial use-cases of the project. Through these examples we demonstrated how

the events that databases produce could be useful in developing analytics, extracting

information and responding accordingly.

In this section of the current report, we investigate how different databases publish

instrumentation events. The approach in this section is not targeted to provide a

thorough investigation of all databases considered in the Data Event Domain Analysis

report (D5.1), but rather an overview of fields available in the most widely used of

them. These fields could be directly incorporated in the events structure (discussed in

the next section) or a custom implementation through TyphonQL will be required to

provide them using database specific trigger events, as elaborated in the Data Event

Domain Analysis report (D5.1). The custom implementation will provide any of the

fields required in the event message, if the underlying store of a polystore does not

provide direct access similar to the ones discussed in this section.

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 3

Confidentiality: Public Distribution

3.2 ORACLE

There is a range of methods to instrument actions applied through an Oracle database.

Auditing actions on an Oracle store can be enabled in different modes depending on the

value assigned to an audit flag named AUDIT_TRAIL. For example, “AUDIT_TRAIL

= db, extended” will allow storing the SQL query executed by the user against the

database. Several audit fields are also accessible through the SYS.AUD$ table or the

DBA_COMMON_AUDIT_TRAIL view. Other methods provided by Oracle involve

the use of analytics packages, such as DBMS_APPLICATION_INFO, available for the

Oracle Enterprise. Table 1 lists few of the fields that get generated with audit events.

The rest of the fields with a description can be found in [7].

Table 1: Audit event for Oracle

Column Example Comments

DBA_AUDIT_TRAIL.OS_USER

NAME

Admin The username of the system

DBA_AUDIT_TRAIL.USERNAM

E

HR The database user

DBA_AUDIT_TRAIL.ACTION_

NAME

CREATE TABLE,

ALTER TABLE,

UPDATE, DELETE,

SELECT, INSERT

Actions applied to the database

DBA_AUDIT_TRAIL.TIMESTA

MP

27-JUL-18 The day of the action (this is not

granular enough to show the second

the action was executed in)

DBA_AUDIT_TRAIL.EXTENDE

D_TIMESTAMP

27-JUL-18

12.41.14.263000000

EUROPE/LONDON

Timestamp of the creation of the au-

dit trail entry (timestamp of user log-

in for entries created by AUDIT

SESSION) in UTC (Coordinated

Universal Time) time zone

DBA_AUDIT_TRAIL.SESSIONI

D

71277 The session id for accessing the data-

base

DBA_AUDIT_TRAIL.ENTRYID 1108 The id of the audit trail entry in a

specific session id

DBA_AUDIT_TRAIL.STATEME

NTID

41 An id of the statement executed in a

session

DBA_AUDIT_TRAIL.RETURNC

ODE
● 0 - Action succeeded

● 2004 - Security

violation

This field can be used to return the

status of the action

DBA_AUDIT_TRAIL.SQL_TEXT Select * from emp; The actual statement

3.3 MYSQL

MySQL provides similar fields to Oracle. These fields are accessible in the commercial

distribution. The instrumentation details are populated through an audit log with the

help of an audit plugin. An example, taken from [8], is shown in

D5.2 Data Event Organisation and Representation Report

Page 4 Version 1.0 18 December 2018

Confidentiality: Public Distribution

Listing 1 that follows.

Listing 1: An example of an audit record in MySQL

Table 2 includes the fields populated in an audit message of MySQL through the audit

plugin.

Table 2: Audit message fields for MySQL

XML field Example Comments

NAME The field can take one of the following

values:

● Audit: when auditing starts, which

may be server startup time

● Connect: when a client connects (log-

ging-in).

● Query: a SQL statement (executed

directly)

● Prepare: preparation of an SQL state-

ment; usually followed by Execute

● Execute: Execution of an SQL state-

ment; usually follows Prepare.

● Shutdown: Server shutdown.

● Quit: when a client disconnects.

● NoAudit: auditing has been turned off.

RECORD_ID “12_2017-10-16T14:25:00” The sequence number at the begin-

ning is initialized to the size of the

audit log file, then incremented by 1

for each record logged

TIMESTAMP "2017-10-16T14:25:32 UTC"

COMMAND_CLAS "drop_table" A string that indicates the type of

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:00 UTC"
 RECORD_ID="1_2017-10-16T14:25:00"
 NAME="Audit"
 SERVER_ID="1"
 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"

 MYSQL_ VERSION="5.7.21-log"/>

<AUDIT>

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:00 UTC"
 RECORD_ID="1_2017-10-16T14:25:00"
 NAME="Audit"
 SERVER_ID="1"
 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"

 MYSQL_ VERSION="5.7.21-log"/>

<AUDIT>

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 5

Confidentiality: Public Distribution

S action performed

CONNECTION_ID 127 An unsigned integer representing

the client connection identifier of

the session

CONNECTION_TY

PE

"SSL/TLS"

DB “test” A string representing the default

database name

HOST “localhost” A string representing the client host

name

IP 127.0.0.1 A string representing the client IP

address

MYSQL_VERSION "5.7.21-log" A string representing the MySQL

server version

OS_LOGIN OS_LOGIN="jeffrey" A string representing the external

user name used during the authenti-

cation process

OS_VERSION "x86_64-Linux" A string representing the operating

system on which the server was

built or is running

SERVER_ID SERVER_ID="1" An unsigned integer representing

the server ID. This is the same as

the value of the server_id system

variable

SQLTEXT SQLTEXT="DELETE FROM t1" A string representing the text of an

SQL statement

Long values may be truncated.

STATUS STATUS="1051" A list of error messages are availa-

ble here:

https://dev.mysql.com/

doc/refman/8.0/en/error-messages-

server.html

STATUS_CODE 0 or 1 STATUS_CODE is 0 for success

and 1 for error

3.4 MONGODB

The auditing facility can write audit events to the console, the syslog, a JSON file, or a

BSON file [9]. Mongo provides several options for monitoring the database status and

logging events. For example, mongostat [10] is a utility that can capture the counts of

CRUD actions executed against the database. Another utility, mongotop [10] is used to

check the read/write activity within the database. System-wide event monitoring can be

enabled as well to provide a detailed audit of every action being executed against the

database. The generated logging can be in JSON or the MongoDB-specific format

BSON. Listing 2 shows a snippet of the audited events on a mongo database, while

Table 3 provides a description for each field.

D5.2 Data Event Organisation and Representation Report

Page 6 Version 1.0 18 December 2018

Confidentiality: Public Distribution

{ "atype" : "createDatabase", "ts" : { "$date" : "2018-10-09T15:36:22.986+0100" }, "local" : { "ip" : "127.0.0.1",

"port" : 27017 }, "remote" : { "ip" : "127.0.0.1", "port" : 58139 }, "users" : [{"user":"antun","db":"admin"}], "roles"

: [{"role":"read","db":"admin"}], "param" : { "ns" : "test" }, "result" : 0 }

{ "atype" : "createCollection", "ts" : { "$date" : "2018-10-09T15:36:22.986+0100" }, "local" : { "ip" : "127.0.0.1",

"port" : 27017 }, "remote" : { "ip" : "127.0.0.1", "port" : 58139 }, "users" : [], "roles" : [], "param" : { "ns" :

"test.inventory" }, "result" : 0 }

Listing 2: Auditing events in MongoDB

Table 3: MongoDB auditing fields description

JSON Field Values assigned Comments

atype

addShard, applicationMessage, atype,

authCheck, authenticate, createCollection,

createDatabase, createIndex, createRole,

createUser, dropAllRolesFromDatabase,

dropAllUsersFromDatabase, dropCollec-

tion, dropDatabase, dropIndex, dropRole,

dropUser, enableSharding, grantPrivileges-

ToRole, grantRolesToRole, grantRo-

lesToUser, removeShard, renameCollection,

revokePrivilegesFromRole, revok-

eRolesFromRole, revokeRolesFromUser,

shardCollection, shutdown, updateRole,

updateUser

Action type can take any value of possible ac-

tions that can get executed on MongoDB.

Each event comes with its own error code

Appended to the “result” field,

e.g. “authenticate” actiontype will return either:

0 - Success

18 - Authentication Failed

ts “2018-10-09T15:36:22.986+0100” Timestamp of the event

UTC time of the event, in ISO 8601

local { "ip" : "127.0.0.1", "port" : 27017 } Document that contains the local IP address and

the port number of the running instance.

remote { "ip" : "127.0.0.1", "port" : 58139 } Document that contains the remote IP address

and the port number of the incoming connection

associated with the event.

users [{"user":"antun","db":"admin"}] Array of user identification documents. Because

MongoDB allows a session to log in with differ-

ent user per database, this array can have more

than one user.

roles [{"role":"read","db":"admin"}] Array of documents that specify

the roles granted to the user.

param e.g. for “authenticate” param holds : {

 user: <user name>,

 db: <database>,

 mechanism: <mechanism>

}

Specific details for the event.

result e.g. “authenticate” will cause a result of:

0 - Success

18 - Authentication Failed

Holds the success/error code of an action

3.5 NEO4J

Neo4J [5] is a leading graph database. The enterprise version of Neo4J provides

security and query logging. Enabling query logging allows monitoring all query events

that are executed against the database. A different logging facility allows monitoring

security events such as creating/deleting a database user, permission and access rights

modifications, password updates and similar events. Listing 3 is an example of a query

logging [11] while Listing 4 is an example for the security logging [12].

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 7

Confidentiality: Public Distribution

2017-11-22 14:31 ... INFO 9 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1 client/127.0.0.1:59167 ...

2017-11-22 14:31 ... INFO 0 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1 client/127.0.0.1:59167 ...

2017-11-22 14:32 ... INFO 3 ms: server-session http 127.0.0.1 /db/data/cypher neo4j - CALL dbms.procedures() - {}

2017-11-22 14:32 ... INFO 1 ms: server-session http 127.0.0.1 /db/data/cypher neo4j - CALL dbms.showCurrentUs...

2017-11-22 14:32 ... INFO 0 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1 client/127.0.0.1:59167 ...

2017-11-22 14:32 ... INFO 0 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1 client/127.0.0.1:59167 ...

2017-11-22 14:32 ... INFO 2 ms: bolt-session bolt johndoe neo4j-javascript/1.4.1 client/127.0.0.1:59261 ...

Listing 3: Neo4J query logging

2016-10-27 13:45:00.796+0000 INFO [AsyncLog @ 2016-10-27 ...] [johnsmith]: logged in

2016-10-27 13:47:53.443+0000 ERROR [AsyncLog @ 2016-10-27 ...] [johndoe]: failed to log in: invalid principal or

credentials

2016-10-27 13:48:28.566+0000 INFO [AsyncLog @ 2016-10-27 ...] [johnsmith]: created user `janedoe`

2016-10-27 13:48:32.753+0000 ERROR [AsyncLog @ 2016-10-27 ...] [johnsmith]: tried to create user `janedoe`: The

specified user ...

2016-10-27 13:49:11.880+0000 INFO [AsyncLog @ 2016-10-27 ...] [johnsmith]: added role `admin` to user `janedoe`

2016-10-27 13:49:34.979+0000 INFO [AsyncLog @ 2016-10-27 ...] [johnsmith]: deleted user `janedoe`

2016-10-27 13:49:37.053+0000 ERROR [AsyncLog @ 2016-10-27 ...] [johnsmith]: tried to delete user `janedoe`: User

'janedoe' does ...

2016-10-27 14:00:02.050+0000 INFO [AsyncLog @ 2016-10-27 ...] [johnsmith]: created role `operator`

Listing 4 Neo4J security logging

Table 4: Neo4J auditing fields description

Field Values assigned Comments
Network Proto-

col
bolt, http Neo4j provides several drivers for different lan-

guages implementing the Bolt protocol [13] for

fast database connections.

Other network protocols are supported, such as

http.

User “johndoe” The name of the database user

Driver

type/version

neo4j-javascript/1.4.1 Neo4j provides javascript, python and java driv-

ers. It shows here the type of the driver and its

version

Query logging created user, deleted user, tried to delete

user
This type of audit shows all possible actions exe-

cuted against the database in system logging

statements with the execution timestamp preced-

ing each statement.

3.6 REDIS

REDIS [4] is an in-memory NoSql data store that depends on key value pairs. Also, it

has several storage persistence levels. Redis provides a built-in audit and logging

functionality that allows monitoring actions applied on the Redis store at different levels

of granularity. Listing 5 shows a snippet of the logging available through Redis GUI,

which is also accessible through a REST API. Redis provides two other logging

facilities, Slowlog [14] and Rsyslog [15] for low level CPU, memory usage and node

assignments in clustered environments.

D5.2 Data Event Organisation and Representation Report

Page 8 Version 1.0 18 December 2018

Confidentiality: Public Distribution

Listing 5: Redis events logging

Table 5: Redis auditing fields description

Field Values assigned Comments
Time “5/29/2018 8:36:02 AM” Event timestamp

User “johndoe” The name of the database user

Originator System/ Administrator The logged in user of the database

Source e.g. User, Cluster The Role of the logged in user

Type “Notification” Message type of the generated event

Description e.g. Login failed The type of the action in addition to its suc-

cess/failure status.

4. DATA ANALYTICS EVENTS SYSTEM ARCHITECTURE

Extending from the events generated from different industry-leading stores that could be

integrated into a polystore, this section presents a high-level architecture for polystore

events analytics in TYPHON, illustrated in Figure 1.

Figure 1: Analytics infrastructure architecture

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 9

Confidentiality: Public Distribution

The main subsystems involved in the proposed architecture are as follows:

 Queues: these operate as the intermediary communication channel between

different subsystems to preserve the messages of events generated at each stage

of the event flow to be consumed by the relevant subscriber. A preliminary

implementation of the architecture is considering Apache Kafka [16] for

message queuing.

 Stream processors: such processors will be responsible for applying direct

analysis to events by providing a platform for the implementation of the

necessary analytics. A preliminary implementation of the architecture is

considering Apache Flink [17] for events analytics.

4.1.1 Events Flow

Following Figure 1, events undergo nine stages that are distributed among two main

interleaved phases; Authorization and Analytics. The authorization phase involves

validating if a new incoming event (request) will be allowed to be executed against the

polystore, based on either hardcoded rules defined in the analytics suite or the history of

previous events processed through the stream processor. This ensures that any malicious

or unintended activity that does not follow the polystore’s business rules will be

detected and rejected. The second phase is the analytics, which involves the continuous

consumption of event messages for analysis and for inquiries incoming from the

authorization phase. Accordingly, the operation of the two phases is interleaved. Below

are the stages an event will go through as it (the event) progresses within the proposed

architecture.

1. In this stage, a query is passed by a user to the TyphonQL engine for parsing and

execution.

2. TyphonQL will have to check the possibility of executing the parsed query.

Accordingly, it will publish a pre-execution event, push it to an authorization

queue and wait for the authorization decision of this event.

3. A stream processor dedicated for authorization, will consume messages from the

authorization queue to apply the required validation checks before generating an

authorization decision of an event.

4. In addition to any rules/checks the authorization stream processor has to apply, it

can also consult the analytics stream processor, if there are any linked events

that could indicate a malicious or an abnormal activity in relation to the new

incoming event.

5. Following the application of the required validations/checks and the consultation

with the analytics stream processor, the authorization stream processor publishes

its authorization decision to the decision queue.

6. TyphonQL receives the authorization decision it was waiting for in Stage 2.

7. Based on the outcome of the authorization decision generated in Stage 6,

TyphonQL will execute the query received at Stage 1 or reject it.

8. In case the query is executed by TyphonQL, a post-execution event will be

generated and pushed to the analytics queue.

9. The analytics stream processor consumes the messages to which the relevant

analytics could be applied. Examples of analytics are presented in Section 5.2.

D5.2 Data Event Organisation and Representation Report

Page 10 Version 1.0 18 December 2018

Confidentiality: Public Distribution

The structure of the events that will be published in the queues (both pre and post

execution) are described below.

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 11

Confidentiality: Public Distribution

5. DATA ANALYTICS EVENTS STRUCTURE

In this section we present the data event organisation metamodel. This will be used by

TyphonQL to serialise events that take place in a polystore and transmit them through

events queues. Data analytics platforms should then be able to monitor these queues and

using the same metamodel, deserialize them in objects for manipulation. To facilitate

this process, a tailored to the polystore Java code implementation will be generated

retrieving information stored in the TyphonML models used to create the polystore. The

code generation process will be discussed in Section 0.

Figure 2: Data event organization metamodel

D5.2 Data Event Organisation and Representation Report

Page 12 Version 1.0 18 December 2018

Confidentiality: Public Distribution

5.1 METAMODEL

Figure 2 presents the data event organisation metamodel. Each time a command arrives

at the TyphonQL execution engine, the latter should generate one event before the

execution of the command. This, labelled as PreEvent in the metamodel, will be used to

block commands from execution based on conditions defined in the analytics engine. If

the PreEvent gets approved, the command will be executed and a PostEvent will be

generated by the TyphonQL engine. In any case, each event will be characterised by a

unique id and will include the TyphonQL query that generated it. The abstract syntax

tree (AST) of the query can be retrieved using the getParsedQuery() operation.

PostEvent instances will point to their corresponding PreEvent instance (preEvent

reference in the metamodel). In order to facilitate analytics related to performance and

the evolution of the polystore (WP6) PreEvents will hold a timestamp of when the

command arrived for execution (queryTime), while PostEvent when the execution

started (startTime) and when it ended (endTime). In addition, PreEvents should store the

user that requested the execution of the command along with the database user (dbUser)

who executed it, while PostEvents will store a success code declaring if the execution

was successful or not.

Each PostEvent will also point to the type of the data manipulation language commands

(DMLCommand) of TyphonQL (e.g., Select, Delete, Insert and Update)
1
 through the

commands reference. As queries might consist of multiple DML commands, the

multiplicity of the commands reference is set as 1 to many. Each DMLCommand will

store a list of the “data structures” that were affected (e.g., the specific table in a

relational database) in the field piles. In addition, some queries will only affect specific

“fields” of the data structure (e.g., columns in a relational database). A list (i.e., fields)

will hold this information. Finally, the clause property will hold the condition clause (if

any) that was applied to this command.

In addition, each DMLCommand will point to the data entity that was manipulated (e.g.,

User, Order, etc.). The entities will be generated from information taken from the the

TyphonML metamodel (highlighted in yellow in Figure 2). Depending on the type of

the DMLCommand, the label of this reference changes (e.g., InsertedEntities for Insert

DML commands). For commands of type Update, two references to the entities are

needed. The first (i.e., updatedEntities) will hold a reference to the newly created entry

while the oldEntities will hold a reference to the entity that has changed. In order to

keep track of which entity is the updated version of an old entity, a reference called

update needs to be used between them. This reference will start from the old version of

the entity, pointing to the updated one.

Finally, each DMLCommand will also refer to the target Database in the polystore (e.g.,

relational, document, etc.) that this command was executed on. Database object will

consist of the name of the database which we assume should be unique in a polystore.

The type of the database (e.g., relational, document, etc.) will be received by querying

the TyphonML model when analytics are developed. The type could be stored in the

Database objects, instead. On the one hand, this would minimise the time needed to

extract this information, but on the other hand it would increase the space needed in the

1
 TyphonQL syntax is not yet finalised but we expect it to support these DML commands as a minimum.

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 13

Confidentiality: Public Distribution

queue to host the event objects. This is a typical space vs time trade-off for which a

decision can be taken based on specific analytics use cases each user of the polystore

has. We discuss plans for future work on this in Section 7.

Table 6 summarises each type/field in the metamodel.

Table 6: Data event message fields description

Tag Name Description

Event
An event is published every time a command arrives at the TyphonQL

engine

- id A unique identifier for the generated event (Pre/Post)

- query The TyphonQL query that triggered the generation of this event

- getParsedQuery()
An operation that returns back the AST of the TyphonQL query using

the TyphonQL‟s parser

PreEvent The PreEvent event is triggered before the execution of the command

- queryTime The date/time the query arrived at TyphonQL engine

- user The user in the application that generated the query

- dbUser The database user (e.g., admin) who asked the execution of the query

PostEvent The PostEvent event is triggered after the execution of the command

- startTime The date/time TyphonQL started the execution of the query

- endTime The date/time TyphonQL finished the execution of the query

- success Code showing the success/failure of an execution of a command

- preEvent Reference to the PreEvent object for a specific PostEvent object

- commands
Reference to the DML commands that were executed as part of the query

that generated the event

DMLCommand
Each time a DML command is executed one subtype of this type is in-

stantiated

- piles The data structures (e.g., tables) the command accessed

- fields The items in the data structures (e.g., columns) the command accessed

- clause The TyphonQL sub-query for this command

- target A reference to the database the command accessed

Database A database in the polystore that is accessed by a command

- name The name of the database

Update This type is instantiated if the DML command was an UPDATE

- updatedEntities A reference to the entity object that includes the updated fields

- oldEntities A reference to the entity object that includes the fields before the update

Select This type is instantiated if the DML command was a SELECT

- returnedEntities
A reference to the entity objects that were returned by the execution of

the select statement

Delete This type is instantiated if the DML command was a DELETE

- deletedEntities
A reference to the entity objects that were deleted after the execution of

the delete statement

Insert This type is instantiated if the DML command was an INSERT

- insertedEntities
A reference to the entity objects that were inserted by the execution of

the insert statement

Entity

The object the holds the fields/getters/setters for each entity described in

the TyphonML model. This class is abstract and is extended by the spe-

cific entities in the TyphonML model using a model-to-text transfor-

mation

- update A reference from the old entity to the updated entity object

D5.2 Data Event Organisation and Representation Report

Page 14 Version 1.0 18 December 2018

Confidentiality: Public Distribution

The analytics architecture will be also able to capture DDL command events (not only

DML commands as shown in the metamodel). However, we do not expect these types

of events to be generated frequently. In addition, although DDL events might be used

for the extraction of information, useful to the database evolution mechanism, we do not

see these being used in any analytics scenarios. For this reason, in this document we

focus on DML commands only.

In the following section, we present motivational scenarios for the types of analytics

that can be performed based on such events. The examples also explain and justify the

structure of the data event metamodel and are based on a simplified e-shop application.

5.2 ANALYTICS SCENARIOS

The following analytics scenarios are based on the assumption that the polystore hosts

the simplified
2 schema (see Figure 3) for storing the users who have an account in the e-

shop, the products available and the orders placed. As TyphonQL is under active

development at the time of writing this document, we have used a relational database

and SQL instead of a polystore and TyphonQL for this concrete example, however,

these scenarios are applicable to polystores/TyphonQL too.

Scenario 1

Goal Find the top viewed but not ordered products in the last 24-hours to offer a discount on

them.

Description The analytics suite must be able to return back the ids of the top products which users looked

for within a specific time window (e.g., 24 hours) but were not ordered. The top products in

this category can be calculated as the ratio of the times a product was browsed divided by

the times the product was purchased in this time window.

Monitoring Queries
3
 SELECT * FROM PRODUCTS WHERE id = „id‟

2
 For reasons of brevity we omit details in the schema that are not used in the scenarios we present in this document.

3
 Using SQL-alike syntax as TyphonQL syntax is not yet finalised.

Figure 3: Analytics scenarios database schema

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 15

Confidentiality: Public Distribution

INSERT INTO ORDERS VALUES („id‟, „date‟, „count‟, „total_amount‟, „product_id‟, „us-

er_id‟)

Information from

PreEvent
 Pre-events are not relevant in this scenario

Information from

PostEvent
 type of DMLCommand (i.e., Select) to count the times each product was browsed

 piles: the data item accessed (i.e., Products)

 returnedEntities: the Product object returned by each select command to extract infor-

mation about it and offer the appropriate discount

 type of DMLCommand (i.e., Insert) to count the times each product was ordered

 piles: the data item accessed (i.e., Orders)

 query: to extract the product_id using the getParsedQuery() operation

Scenario 2

Goal Order more stock of prime items if users view them more than normally

Description Identify the products that have higher views than normally to order more stock, before users

place orders. We are only interested in those products labelled as prime, as next day delivery

is guaranteed and we need to make sure that stock will last.

Monitoring Queries SELECT * FROM PRODUCTS WHERE id = „id‟

Information from

PreEvent
 Pre-events are not relevant in this scenario

Information from

PostEvent
 type of DMLCommand (i.e., Select)

 piles: the data item accessed (i.e., Product)

 clause: get the id of the product and use TyphonQL to get if it is prime. We can also, as

in scenario 1, get the Product object from the returnedEntities reference instead. We use

this scenario to demonstrate the alternative solution.

Scenario 3

Goal Identify products that are running low in stock to order more.

Description Find those products whose stock is getting below a specific threshold when orders are placed

and order some more. The same action could be done by querying all the products from the

database at a specific time (e.g., at midnight) and find those low in stock. However, with the

latter approach we wouldn‟t have real-time stock metrics and we also need to query all the

products in the store. By monitoring the events, we just need to check those products for

which an order was placed. In addition, this offers real-time stock monitoring.

Monitoring Queries UPDATE PRODUCTS SET stock = stock - count WHERE id = „id‟

Information from

PreEvent
 Pre-events are not relevant in this scenario

Information from

PostEvent
 type of DMLCommand (i.e., Update)

 piles: the data item accessed (i.e., Products)

 updatedEntity: get the updated Product object which includes a field for the remaining

D5.2 Data Event Organisation and Representation Report

Page 16 Version 1.0 18 December 2018

Confidentiality: Public Distribution

stock.

Scenario 4

Goal Prevent ingenuine orders.

Description Prevent user with multiple orders placed within a short time window (e.g. 5 minutes - num-

ber of orders above a specific threshold) placing another one. The analytics engine should

provide the mechanism to block the execution of the order until the buyer confirms that it is

genuine.

Monitoring Queries INSERT INTO ORDERS VALUES („id‟, „date‟, „count‟, „total_amount‟, „product_id‟, „us-

er_id‟)

Information from

PreEvent
 queryTime: construct the time window

 clause: get the user_id to count the number of orders placed within a time-window

 query: get type of the command (i.e., Insert) using the getParsedQuery() operation

 query: the data item accessed (i.e., Orders) using the getParsedQuery() operation

Information from

PostEvent
 No post event will be generated as we want to prevent the execution of the query

Scenario 5

Goal Monitor products removed from a basket

Description A user can add a product to a basket, and later decide that she wants to remove it. This could

indicate a problem with this specific product, especially if several users have removed it

from their baskets, that the seller should be made aware of.

Monitoring Queries DELETE FROM BASKET WHERE id = „id‟

Information from

PreEvent
 Pre-events are not relevant in this scenario.

Information from

PostEvent
 type of DMLCommand (i.e., Delete)

 piles: the data item accessed (i.e., Basket)

 clause: extract the id of the product which we can use to query the polystore to check the

reason behind customers avoiding this product or

o deletedEntities: get the Basket object from the deletedEntities reference

Scenario 6

Goal Monitor queried products before a purchase.

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 17

Confidentiality: Public Distribution

Description A user searches for several items before making a final purchase. This can help in enhancing

the collaborative filtering to enhance the recommendation for other users.

Monitoring Queries SELECT * FROM PRODUCT WHERE id = „id‟

INSERT INTO ORDERS VALUES („product_id‟, …)

Information from

PreEvent
 user: get the user to group search queries for each individual

 queryTime: get the time the user searched for each product (to filter and check only

queries happening within a specific time window, i.e., do not monitor searches that hap-

pened, for example, a week ago as they might be for a different “purchase session”)

Information from

PostEvent
 type of DMLCommand (i.e., Select)

 piles: the data item accessed (i.e., Product)

 type of DMLCommand (i.e., Insert)

 piles: the data item accessed (i.e., Orders)

 clause: extract the id of the product and use TyphonQL to extract details about the pur-

chased product and the products searched before that

Scenario 7

Goal Predict a user‟s next search based on previous searches

Description Some products are sold individually, or they are sold within a package. Analytics can rec-

ommend to a user, products that are related to her purchase and possibly provide her with

the option of an offer to buy a package of two or more different products that are usually

sold together (e.g. complement each other‟s functionality). Also, this information can be

used to refine the queries and presentation of the results (e.g., list products that match the

query and also have higher chances to match user‟s needs/preferences).

Monitoring Queries SELECT * FROM PRODUCT WHERE id = „id‟

Information from

PreEvent
 Pre-events are not relevant in this scenario.

Information from

PostEvent
 type of DMLCommand (i.e., Select)

 piles: the data item accessed (i.e., Product)

 clause: extract the id of the products which we can use either to query the polystore for

similar products to recommend to the user or use in a predictive/learning algorithm to

identify user‟s needs/preferences.

Scenario 8

Goal Monitor query execution time.

Description Use analytics to detect queries taking long to execute. This will help detect performance

bottlenecks within the system.

Monitoring Queries Any query

D5.2 Data Event Organisation and Representation Report

Page 18 Version 1.0 18 December 2018

Confidentiality: Public Distribution

Information from

PreEvent
 Pre-events are not relevant in this scenario

Information from

PostEvent
 The unique event id and starting time

 The unique event id and ending time.

Scenario 9

Goal Identify if a customer is determined to buy a specific product.

Description The analytics can provide access to the collection of queries performed by a user in brows-

ing a specific product or similar ones (e.g. same product but different brands). This type of

analysis can help in assessing how determined is the user to buy a specific product and give

a hint to the e-commerce website owner that it worth investing on targeted advertisement for

this user.

Monitoring Queries SELECT * FROM PRODUCT WHERE id = „id‟

Information from

PreEvent
 Pre-events are not relevant in this scenario.

Information from

PostEvent
 type of DMLCommand (i.e., Select)

 piles: the data item accessed (i.e., Product)

 clause: extract the id of the product which we can use to query the polystore and find

the similar ones

Scenario 10

Goal Tracking suspicious reviews (a)

Description The events analytics should be able to track review submissions by the same user occurring

within a short time window across several products or by different users across the same

product. Such a behaviour will denote the possibility of fake reviews submitted by bots.

Monitoring Queries INSERT INTO REVIEWS VALUES („user_id‟, „product_id‟, „review_text‟)

Information from

PreEvent
 queryTime: get the time the review was submitted to construct the time window

 query: get the type of command (i.e., Insert) using the getParsedQuery() operation

 query: the data item accessed (i.e., Reviews) using the getParsedQuery() operation

 query: extract the id of the user who is submitting a review to count the number of re-

views this account has submitted within the time window

Information from

PostEvent
 No post event will be generated as we want to prevent the execution of the query

Scenario 11

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 19

Confidentiality: Public Distribution

Goal Tracking suspicious reviews (b)

Description A user submitting reviews without actually having bought the product. This could be either a

fake review from an individual or a bot to generate false review of a product causing it to

lose customers. The events analytics should be able to detect such action to prevent it.

Monitoring Queries INSERT INTO REVIEWS VALUES („user_id‟, „product_id‟, „review_text‟)

INSERT INTO ORDERS VALUES („product_id‟, …, „user_id‟)

Information from

PreEvent
 query (for both types of queries): get the type of command (i.e., Insert) using the get-

ParsedQuery() operation

 query (for both types of queries): the data item accessed (i.e., Reviews and Orders) us-

ing the getParsedQuery() operation

 query (for the second type of query): extract the id of the users who placed an order for

a specific product.

 query (for the first type of query): extract the id of the user who is submitting a review

and the id of the product for which the review is submitted. Try to match if this user has

bought the product (by checking the events collected from the previous bullet point)

Information from

PostEvent
 No post event will be generated as we want to prevent the execution of the query

5.3 USE-CASE SPECIFIC SCENARIOS

The architecture and the data event metamodel presented in Sections 0 and 5.1,

respectively, can be used by the TYPHON project industrial partners to facilitate the

implementation of analytics taking place in their business.

For example, GMV is interested in using the analytics engine to be able to filter and

store in the database information about forest areas in which the percentage of healthy

trees is high or low. Using the proposed analytics architecture and data metamodel, the

images that are received from the satellite and are about to be inserted in the polystore

can firstly be provided to the analytics infrastructure for further analysis. Every time an

insert event is triggered the image can be passed to the pre-existing libraries developed

by GMV to extract metadata and information regarding the number of healthy trees in

the area. Images with healthy trees below (or above) a specific threshold will be stored

in a database for further analysis while the rest will be archived.

Regarding Alpha Bank, exemplar analytics scenarios of interest that use the proposed

architecture and metamodel are described below. Alpha bank would be interested to

check real-time (debit/credit card) transactions and identify how their customers are

behaving and what types of products they are buying during special events (e.g., Boxing

Day, Black Friday, etc.). Using real-time analytics, they will be able to offer customised

products immediately (e.g., loans or lower interest rates) to their customers that match a

specific profile.

Another scenario would be that of fraud detection. Accounts that have no transactions

for a specific period are marked as inactive (dormant). Alpha Bank would be interested

to monitor activation of dormant accounts that belong to clients above a certain age and

issue alerts as it might be the case that the account was activated by a third person who

D5.2 Data Event Organisation and Representation Report

Page 20 Version 1.0 18 December 2018

Confidentiality: Public Distribution

knows that the account owner is deceased and tries to get hold of the savings. To further

protect these types of accounts, any transaction from a recently activated dormant

account should be blocked if it doesn‟t match the profile of the account owner (e.g., an

elderly person who uses the account to buy video games). The proposed architecture

and data event metamodel offers the facilities needed to accommodate such scenarios.

6. JAVA CODE GENERATION

In order to facilitate the development of analytics using the proposed architecture

described in Section 0, we need to offer the code that will be used by TyphonQL to

instantiate database events. In addition, the same codebase can be used by analytics

experts to manipulate those events. As the proposed architecture relies on frameworks

like Apache Kafka [16] and Apache Flink [17], which are developed in Java and Scala,

we need to provide implementations that support them. In this project we opted for the

Java programming language due to its broader audience. Figure 4 presents the code

generation process which is described in detail in Section 6.1 that follows.

6.1 CODE GENERATION PROCESS

By looking at the data event metamodel in Figure 2 for the e-shop example, one can see

that there are two categories of classes in the metamodel. The static content classes, i.e.,

those that will always be the same regardless of the content of the TyphonML models

(appear in white in Figure 2) and the dynamic, i.e., those that need to be generated

based on information taken from the TyphonML models (in color in Figure 2). Thus,

the automated process of generating these artifacts consists of two phases. The first

transfers the static content Java files in a new Java project
4
. The second uses model-to-

text (M2T) transformations to generate one class for each element of type Entity in the

TyphonML model. Each of these classes will extend the Entity class and will have a

4
 Another option would be to bundle these static classes in a library and reuse them instead of replicating them.

Figure 4: Code generation process overview

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 21

Confidentiality: Public Distribution

field and the appropriate getters/setters for each of its attributes provided in the

TyphonML model.

We developed our solution as an Eclipse plugin. Users just need to select the

TyphonML (.tml) file, right click and navigate to TYPHON -> Generate Analytics Code

as shown in Figure 5. This will generate a new Java project in which all the static

content classes are created. Then the plugin will automatically trigger the execution of

the M2T transformation that will create the dynamic content files.

We use the Epsilon Generation Language (EGX/EGL) [18] to implement the M2T

transformation. The orchestrator EGX script is shown in Listing 6.

Figure 5: Eclipse plugin that automates the generation of Java code from a TyphonML model

Listing 6: The EGX orchestrator

D5.2 Data Event Organisation and Representation Report

Page 22 Version 1.0 18 December 2018

Confidentiality: Public Distribution

For each of the elements of type Entity in the TyphonML model, we create a new file

into the newly created Java project (inside src/org/typhon/entities package). The content

of each of the files is created dynamically by the “entitiesGenerator.egl” template which

is shown in Listing 7 and explained below.

In EGL, all statements outside the [% %] and [%= %] markers are printed as static text

(i.e., as shown in the file). In line 6, we create the class signature using as name the

property name of the current entity. In lines 8 - 21 we iterate through all the attributes of

this specific entity. Firstly, in line 11 we declare the attribute as a private field to the

class followed by its type and its name (both taken from the TyphonML model). Then

in lines 13 - 15 we create the public getter for this attribute and in lines 17 - 19 the

public setter.

As some entities include references to other entities (e.g., foreign key relationships) we

need to create fields and public getters/setters for these as well. If the cardinality of the

relationship (as denoted by the TyphonML model) is 1 or 0..1, then the type of the field

for this relationship is simply the type of the element this relationship points to. For

example, the type of the paidWith relationship of the Order entity (see line 5 of Figure

5) will be CreditCard. In contrast, if the cardinality is 0..* or 1..* then the type should

Listing 7: The EGL template

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 23

Confidentiality: Public Distribution

be an ArrayList of items. For example, the type of the products relationship of the

Order entity (see line 4 of Figure 5) will be ArrayList<Product>. The code generation

for the relationship is done in lines 22 – 48 of Listing 7. More specifically, in line 23 we

check the cardinality of the relationship and if that it is 0..1 or 1, we generate the field,

the public getter and setter in lines 25, 27-29 and 31-33, respectively. Otherwise (i.e.,

the cardinality is 0..* or 1..*), we generate the appropriate field, getter and setter in lines

37, 39-41 and 43-45 respectively using the ArrayList datatype.

An example output for an entity “Order” of Figure 5 (lines 1 - 7) is shown in Listing 8

7. CONCLUSIONS AND FUTURE WORK

In this document we presented the results of an in-depth domain analysis carried out in

order to identify the types of events that a TYPHON polystore should be able to

Listing 8: The Java code generated for the "Order" entity of the TyphonML model

D5.2 Data Event Organisation and Representation Report

Page 24 Version 1.0 18 December 2018

Confidentiality: Public Distribution

publish. The consumption of these events, distributed through TYPHON channels, will

help the development of orthogonal analytics and monitoring services.

We assessed two relational and four non-relational databases to identify notifications

that are triggered when data operations are executed. We then presented examples,

through which we demonstrated how the events that databases produce could be useful

in developing analytics, extracting information and responding accordingly.

We finally presented the data event metamodel which was extracted by combining the

knowledge acquired by studying the events existing databases publish and their

potential applications to an e-commerce website scenario and the project’s industrial

use-cases.

In the future, though our collaboration with the industrial partners we plan to collect

more examples that will help in the evolution of the data event metamodel. In addition

to that, we expect the metamodel to evolve even more to adapt to design decisions taken

as other artefacts of this project (e.g., TyphonQL) are taking shape.

Finally, to accommodate the time vs space trade-off, as this explained in Section 5.1, we

plan to introduce a configuration mechanism in the analytics suite which will allow the

polystore owners to define the level of granularity of the events stored in the analytics

queues. For example, an organisation might not want to keep the actual objects inserted,

deleted, updated, etc. into the event queues, but prefers to store their ids only and extract

them using TyphonQL in order to reduce the space needed for storing events.

 D5.2 Data Event Organisation and Representation Report

18 December 2018 Version 1.0 Page 25

Confidentiality: Public Distribution

8. BIBLIOGRAPHY

[1] Oracle Corporation, “MySQL,” 2018. [Online]. Available: https://www.mysql.com/. [Accessed 04 December

2018].

[2] Oracle Corporation, “Database | Cloud Database | Oracle,” 2018. [Online]. Available:

https://www.oracle.com/database/. [Accessed 04 December 2018].

[3] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable Data Storage, O'Reilly Media, Inc., 2013.

[4] J. L. Carlson, Redis in Action, Manning Publications Co., 2013.

[5] Neo4j, Inc., “The Neo4J Graph Platform,” 2018. [Online]. Available: https://neo4j.com/. [Accessed 04 December

2018].

[6] The Apache Software Foundation, “Apache Cassandra,” 2016. [Online]. Available: http://cassandra.apache.org/.

[Accessed 04 December 2018].

[7] Oracle Corporation, “DBA_AUDIT_TRAIL,” 2018. [Online]. Available:

https://docs.oracle.com/cd/B19306_01/server.102/b14237/statviews_3056.htm. [Accessed 04 December 2018].

[8] Oracle Corporation, “MySQL :: Security in MySQL :: 7.4.3 Audit Log File Formats,” 2018. [Online]. Available:

https://dev.mysql.com/doc/mysql-security-excerpt/5.6/en/audit-log-file-formats.html. [Accessed 04 December

2018].

[9] MongoDB, Inc, “Auditing - MongoDB Manual,” [Online]. Available:

https://docs.mongodb.com/manual/core/auditing/. [Accessed 04 December 2018].

[10] I. MongoDB, “Monitoring for MongoDB,” [Online]. Available:

https://docs.mongodb.com/manual/administration/monitoring/. [Accessed 22 11 2018].

[11] Neo4j, Inc., “Query Logging,” [Online]. Available: https://neo4j.com/docs/operations-

manual/current/monitoring/logging/query-logging/. [Accessed 04 December 2018].

[12] Neo4J, Inc., “Security events logging,” [Online]. Available: https://neo4j.com/docs/operations-

manual/current/monitoring/logging/security-events-logging/. [Accessed 04 December 2018].

[13] I. Neo Technology, “Bolt network protocol,” 2018. [Online]. Available: https://boltprotocol.org/. [Accessed 6

December 2018].

[14] Redis, “Redis Slowlog,” 2018. [Online]. Available:

https://docs.redislabs.com/latest/rs/administering/logging/redis-slow-log/. [Accessed 17 December 2018].

[15] Redis, “Redis Rsyslog,” 2018. [Online]. Available:

https://docs.redislabs.com/latest/rs/administering/logging/rsyslog-logging/. [Accessed 17 December 2018].

[16] A. S. Foundation, “Apache Kafka: A distributed streaming platform,” 2017. [Online]. Available:

https://kafka.apache.org/. [Accessed 21 November 2018].

[17] A. S. Foundation, “Apache Flink - Stateful Computations over Data Streams,” 2017. [Online]. Available:

https://flink.apache.org/. [Accessed 21 November 2018].

[18] L. M. Rose, F. R. Paige, S. D. Kolovos and A. P. Polack, “The Epsilon Generation Language,” in European

Conference on Model Driven Architecture-Foundations and Applications, Berlin, 2008.

