
Project Number 780251

D2.4 TyphonML Modelling Tools

Version 1.0
28 June 2019

Final

Public Distribution

University of L’Aquila

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, Nea Odos, The Open Group, University of L′Aquila, University of Namur,
University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the TYPHON Project Partners.

D2.4 TyphonML Modelling Tools

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
Nea Odos The Open Group
Charalampos Daskalakis Scott Hansen
Themistocleous 87 Rond Point Schuman 6, 5th Floor
106 83 Athens 1040 Brussels
Greece Belgium
Tel: +30 210 344 7300 Tel: +32 2 675 1136
E-mail: cdaskalakis@neaodos.gr E-mail: s.hansen@opengroup.org
University of L′Aquila University of Namur
Davide Di Ruscio Anthony Cleve
Piazza Vincenzo Rivera 1 Rue de Bruxelles 61
67100 L’Aquila 5000 Namur
Italy Belgium
Tel: +39 0862 433735 Tel: +32 8 172 4963
E-mail: davide.diruscio@univaq.it E-mail: anthony.cleve@unamur.be
University of York Volkswagen
Dimitris Kolovos Behrang Monajemi
Deramore Lane Berliner Ring 2
York YO10 5GH 38440 Wolfsburg
United Kingdom Germany
Tel: +44 1904 325167 Tel: +49 5361 9-994313
E-mail: dimitris.kolovos@york.ac.uk E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Document Control
Version Status Date

0.1 Document outline 6 March 2019
0.2 First draft 1 June 2019
0.7 First full draft 21 June 2019
0.8 Further editing draft 26 June 2019
1.0 Final updates after partner reviews 28 June 2019

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page iii

D2.4 TyphonML Modelling Tools

Table of Contents

1 Introduction 1

1.1 Structure of the deliverable . 1

2 The TyphonML textual editor 3

2.1 Datatypes . 3

2.1.1 Defining conceptual entities . 4

2.2 Enabling natural language processing . 5

2.3 Mapping conceptual models to relational databases . 5

2.4 Mapping conceptual models to document databases . 6

2.5 Mapping conceptual models to graph databases . 7

2.6 Mapping conceptual models to key-value databases . 7

3 The TyphonML graphical editor 8

4 Evolving TyphonML models 12

4.1 Change operators for conceptual elements . 12

4.2 Change operators for logical elements . 14

4.3 Evolving TyphonML models by means of the graphical editor 14

5 Validating TyphonML models 16

6 Generating and using the microservice-based TyphonML API 19

7 Conclusions 22

A Installation and use of the TyphonML modelling tools 24

Page iv Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Executive Summary

In recent years, NoSQL databases have emerged as an alternative approach to data storage, event though they
still remain far from the level of maturity of relational databases. While there is some work towards this
direction, the proposed solutions are technology-specific and not applicable across different classes of NoSQL
data stores.

This document presents the supporting tools that have been developed in the context of the WP2 of the TY-
PHON project to support the specification of TyphonML models together with their evolution. The tools permit
developers to specify conceptual entities by abstracting the specificities of the underlying technologies. Map-
pings to specific database systems are enabled by interestingly giving the possibility of managing polystores
consisting of both relational and NoSQL databases. Further than presenting an overview of the developed
foundations, the document contains concrete examples that users can follow to actually use the proposed Ty-
phonML modeling tools.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page v

D2.4 TyphonML Modelling Tools

1 Introduction

The aim of TYPHON is to provide an industry-validated methodology and integrated technical offering for
designing, developing, querying, evolving, analysing and monitoring architectures for scalable persistence of
hybrid data (relational, graph-based, document-based, textual etc.).

In the context of TYPHON, WP2 is focusing on the development of languages and tools for designing hybrid
polystores taking into account the structure of the data and the available deployment resources. In particular,
the main objectives of WP2 are the development of the TyphonML to model in a homogeneous manner data
that need to be stored in polystores. In the previous deliverables, the TyphonML language has been designed
and validated with respect to requirements that have been elicited together with the industrial partners of the
project. In this document, the modeling tools supporting the specification and usage of TyphonML models are
presented. In particular, we present results of WP2 related to the following task (from the TYPHON DoW):

Task 2.3: TyphonML Modelling Tools Design and Implementation. This task will design and
develop modelling tools that engineers can use to define TyphonML models. The developed
modelling tools will feature different viewpoints (data, requirements, infrastructure-centric) that
will enable engineers to model hybrid polystores at a high level of abstraction. We anticipate that
several different concrete syntaxes (diagram-based, text-based, table-based etc.) may be neces-
sary to accommodate for the particularities of each view point. TyphonML will be developed by
exploiting mature technologies available in the Eclipse ecosystem. For the specification of the
abstract syntax of the language, the Ecore/EMF metamodelling stack will be used. The develop-
ment of the textual concrete syntax can rely on technologies like EMFText and XText, while the
graphical editors for TyphonML models can be developed using technologies like GMF, and Eu-
genia. TyphonML will be also implemented as a set of UML profiles to enable wider adoption in
the industry.

As presented in deliverable D2.3 [2], TyphonML has been designed so to enable the specification and analysis
of data to be managed and stored on hybrid polystores. TyphonML models play a key role in the overall Typhon
vision since they underpin several phases of polystore life-cycle including deployment, query, and evolution
as shown in Fig. 1.

TyphonML specifications logically consist of four main types of elements i.e., definition of data types, speci-
fication of conceptual entities and relationships, mappings of conceptual elements on concrete database tech-
nologies. Moreover, in case the considered TyphonML model has been already deployed, the language permits
modelers to specify changes that can be operated so to enable the automatic migration of the already stored
data and make them consistent with the data schema being specified in the new version of the TyphonML
model.

This document presents the tools that have been developed in the context of WP2 to support the specification of
TyphonML models, their analysis and evolution. According to the use case requirements described in D1.1 [5],
both textual and graphical editors have been developed. Moreover, validation tools have been also provided to
enable early analysis of TyphonML models.

1.1 Structure of the deliverable

The structure of the deliverable is as follows: the TyphonML textual editor is presented in Section 2, whereas
the graphical one is the subject of Section 3. Section 4 presents the change operators that are available to specify

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 1

D2.4 TyphonML Modelling Tools

TyphonML
Data Access Layer

Generation
Polystore API

MongoDB

Cassandra

MySQL

…

Migration
technologies

(WP6)

Deployment
technologies

(WP3)

Query
technologies

(WP4)

Analytics and Monitoring
technologies

(WP5)

…

depends / makes use of

input / output

(software) artifact

Synthesis activity

Legend

Figure 1: TyphonML in the overall TYPHON picture (from D2.3 [2])

how existing TyphonML specifications need to be evolved. The validation facilities that permit to perform early
analysis of TyphonML models are presented in Section 5. Section 6 presents the code generator for producing
the data access layer consisting of an API that developers can programmatically use for performing CRUD
operations on the modeled systems. Section 7 concludes the document and provides an overview of the next
steps.

The document has been defined so to provide the reader with enough details that permit users to play with the
developed modeling tools, which are publicly available at https://github.com/typhon-project/typhonml.
To this end, Appendix A is given in order to present the technical dependences that need to be satisfied for
using the TyphonML modeling tools. A guideline to install such dependences is also presented.

Page 2 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://github.com/typhon-project/typhonml

D2.4 TyphonML Modelling Tools

2 The TyphonML textual editor

The TyphonML textual editor has been developed by means of Xtext1, which is an Eclipse project for devel-
oping domain-specific languages. Starting from the specification of the grammar of the language, the Xtext
framework supports the implementation of a full infrastructure, including parser, linker, type-checker, com-
piler as well as editing support for Eclipse. The developed TyphonML textual editor provides modelers with
typically expected features like syntax highlighting, code completion, and outlines.

Figure 2: The TyphonML textual editor at work (to be replaced)

Figure 2 shows the TyphonML editor at work. Custom and primitive data types can be separately defined (in
order to enable their reuse in different projects) from the actual specification of the data entities to be stored.
In the following, the different constructs that are available in the TyphonML textual language are separately
presented.

2.1 Datatypes

Further than primitive data types (e.g., string, data, integer, real, etc.), the language permits modeler to define
new types by means of the keyword customdatatype. For instance, developer can define a new datatype named
Jpeg consisting of three elements i.e., date, thumbnail and content for enabling the storage of the creation
date, the thumbnail, and the actual content, respectively of jpeg pictures being stored. The items of custom

1https://www.eclipse.org/Xtext/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 3

D2.4 TyphonML Modelling Tools

datatypes can be either primitive (e.g., Date) or defined in some package to be referred as in the case of thumb-
nail and content elements in Listing 1 that are of type Blob defined in the package it.univaq.disim.Blob (see
lines 4–5 in Listing 1).

1 customdatatype Jpeg {

2 elements{

3 date : Date,

4 thumbnail : Blob ["it.univaq.disim.Blob"],

5 content: Blob ["it.univaq.disim.Blob"]

6 }

7 }

Listing 1: Definition of custom datatypes

2.1.1 Defining conceptual entities

After the definition of custom data types, modelers can finally start with the definition of the concepts and
relationships that will be managed by the information systems being developed. Conceptual entities can be
defined by means of the keyword entity as shown in Listing 2. Each entity specification includes the definition
of contained attributes and references. In particular, attributes are defined with

<name> ’:’ <PrimitiveType|CustomDataType>

elements, whereas relationships occurring between entities are defined by means of

<name> ’->’ <Entity>[<Cardinality>]

elements. It is also possible to specify if the target entity is contained (e.g., to trigger cascade-deletion) by using
’:->’ instead of ’->’. For instance, Listing 2 contains the specification of the conceptual entities underpinning
a simple e-commerce system. The defined Product entity defined therein, consists of the attributes name

and description of type String. Moreover, each product can contain several reviews (see the containment
reference with target entity Review at line 8 of Listing 2) and can be an item contained in possibly different
orders (see line 9). It is important to remark that when defining a reference from one entity (e.g., named
Product) to a second entity (e.g., named Review) it is possible to specify the opposite reference from Review

to Product in order to define a bidirectional relation instead of two different unidirectional ones.

1 entity Review{

2 product -> Product[1]

3 }

4

5 entity Product{

6 name : String

7 description : String

8 review :-> Review."Review.product"[0..*]

9 orders -> Order[0..*]

10 photo : Jpeg;

11 }

12

13 entity Order{

14 date : Date

Page 4 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

15 totalAmount : Int

16 products -> Product."Product.orders"[0..*]

17 users -> User."User.orders"[1]

18 paidWith -> CreditCard[1]

19 }

20

21 entity User{

22 name : String

23 surname : String

24 comments :-> Comment[0..*]

25 paymentsDetails :-> CreditCard[0..*]

26 orders -> Order[0..*]

27 }

28

29 entity Comment{

30 freetext content [SentenceSegmentation,TextClassification]

31 responses :-> Comment[0..*]

32 }

33

34 entity CreditCard{

35 number : String

36 expiryDate : Date

37 }

Listing 2: Definition of conceptual entities

2.2 Enabling natural language processing

In order to enable advanced text analysis, Edge Hill University (EHU) has conceived natural language process-
ing tasks [4] that can be enabled from the TyphonML editor on all the conceptual attributes that are defined
by means of the keyword freetext as for instance done for the attribute content of the Comment conceptual
entity specified at line 30 of Listing 2.

Details about the analysis and the management of freetext attributes are given in D2.2. For the sake of this
document, it is enough to mention that an Elasticsearch2 back-end is configured to enable the application of
natural language processing tasks as specified in the TyphonML models.

2.3 Mapping conceptual models to relational databases

The conceptual entities defined as previously shown need to be mapped to actual database technologies. It’s
up to the modeler deciding how to allocate the modeled entities to the available databases. One of the database
kinds supported by TyphonML is the relational one. Thus, the TyphonML editor provides the modelers with
the constructs that are necessary to specify which entity should be stored in a relational database and how. To
this end, by means of the keyword table modelers will define the tables that are needed to store the entities of
interests. In particular, by referring to the example given in Listing 3, a table definition is given by specifying
i) its name, ii) the reference to the conceptual entity that will be stored in the table being defined (e.g., the
entity Order at line 4), iii) optionally the attributes of the referred entity that should be indexed to improve the

2https://www.elastic.co/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 5

D2.4 TyphonML Modelling Tools

performance of the queries to be evaluated on the relational database being developed (see e.g., the attribute
date of the entity Order as specified in line 6)).

1 relationaldb RelationalDatabase{

2 tables{

3 table {

4 OrderDB : Order

5 index orderIndex {

6 attributes ("Order.date")

7 }

8 }

9 table {

10 UserDB : User

11 index userIndex{

12 attributes ("User.name")

13 }

14 }

15 table {

16 ProductDB : Product

17 index productIndex{

18 attributes ("Product.name")

19 }

20 }

21 table {

22 CreditCardDB : CreditCard

23 index creditCardIndex{

24 attributes ("CreditCard.number")

25 }

26 }

27 }

28 }

Listing 3: Definition of conceptual entities

2.4 Mapping conceptual models to document databases

Listing 4 shows the specification of a simple document database storing reviews and comments related to
products managed by the considered e-commerce system. The keyword collections permits to specify the
collections that need to be stored. According to the specification of ReviewCommentDB given in Listing 4, the
collections ReviewsCol and CommentsCol will store objects consisting of all the attributes defined in the Review
and Comment entities defined in Listing 2, respectively.

1 documentdb ReviewCommentDB{

2 collections{

3 ReviewsCol : Review

4 CommentsCol : Comment

5 }

6 }

Listing 4: Definition of a simple document-based database

Page 6 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

2.5 Mapping conceptual models to graph databases

TyphonML permits modelers to specify also data that need to be stored in a graph-like structure. For instance,
Listing 5 shows the specification of a simple graph-based DB storing the concordance level among different
Products. In particular, the defined ConcordanceDB consists of nodes referring the conceptual Product entity
(see line 3), and for each of them only the corresponding name attribute is stored. Pairs of products are linked
by edges, each representing the corresponding concordance value (e.g., see the edge concordance defined at
line 8).

More in general, the construct node permits modelers to specify the nodes of the data structure being modeled.
Each node consists of the reference to the conceptual entity of interest, and of attributes to be stored in each
node of the graph. The keyword edge consists of the structural features that are needed to specify the source
and target nodes of the edges being specified. Labels can be defined by means of the keyword labels. Each
label is a named element and consists of the corresponding type that can be primitive, custom, or even an entity
type.

1 graphdb ConcordanceDB {

2 nodes {

3 node ProductNode!Product {

4 name = "Product.name"

5 }

6 }

7 edges {

8 edge concordance {

9 from ProductNode

10 to ProductNode

11 labels {

12 weight:int

13 }

14 }

15 }

16 }

Listing 5: Definition of a simple graph-based database

2.6 Mapping conceptual models to key-value databases

Key-value stores consist of sets of key-value pairs with unique keys. TyphonML permits modelers to specify
aggregation of elements to be stored in key-value pairs by means of keyvaluedb elements as shown in Listing 6.
The modeled PhotoDB permits to store elements referring to the photo attribute of the Product entity specified
in Listing 2. Each element can be an aggregation of heterogeneous data even related to different conceptual
entities.

1 keyvaluedb PhotoDB {

2 elements {

3 photocontent { photokey -> ("Product.photo") }

4 }

5 }

Listing 6: Definition of a simple key-value database

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 7

D2.4 TyphonML Modelling Tools

3 The TyphonML graphical editor

The TyphonML graphical editor is developed by relying on Sirius3, which is an Eclipse project supporting the
development of graphical modeling workbenches by leveraging the Eclipse Modeling technologies, including
EMF and GMF. A typical workbench developed with Sirius is composed of a set of Eclipse editors (diagrams,
tables, and trees) which allow the users to create, edit and visualize EMF models. The editors are defined by a
model, which defines the complete structure of the modeling workbench, its behaviour, and all the editing and
navigation tools. A runtime dynamically interprets the description of a Sirius modeling workbench within the
Eclipse IDE. For supporting the specific need for customization, Sirius is extensible in many ways, notably by
providing new kinds of representations, new query languages and by being able to call Java code to interact
with Eclipse or any other system.

Figure 3: The TyphonML graphical editor at work

The TyphonML graphical editor comes with a palette containing tools allowing users to create new model
elements. Specifically, the palette contains tools to create Entity elements, Attribute within entities, and re-

3https://www.obeodesigner.com/en/product/sirius

Page 8 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://www.obeodesigner.com/en/product/sirius

D2.4 TyphonML Modelling Tools

Figure 4: Creating a new conceptual entity

lationships between the same entities (Relation). So a dedicated palette with specific tools for each type of
database is also available (see Fig. 3 showing the TyphonML graphical editor at work).

Each element carries its attributes specified through the appropriate "Properties" view of Eclipse. See the ex-
ample in Fig. 4, where a new Entity is created through the palette, and the name is set through the "Properties"
view. It is important to remark that the graphical editor prevents problems of inconsistency between the tools
present in the palette. In other words, it is not possible to create elements that are not those expected from
the language metamodel. Thus, for example, the "Attribute" tool in the section of the palette dedicated to the
Entity can be inserted only within Entity elements.

Figure 5: Hiding elements in the graphical presentation of TyphonML models

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 9

D2.4 TyphonML Modelling Tools

Figure 6: Mapping conceptual entities to relational databases

The editor also permits modelers to hide elements in the canvas to make her easier to view and develop big
models. It is possible, for example, to view only the conceptual representation of the model by hiding what
concerns the databases and/or vice versa (see an example in Fig. 5).

Mapping conceptual models to relational databases As enabled by the textual language, the TyphonML
graphical editor permits modelers to map the conceptual entities to actual database technologies. Figure 6
shows an example of mapping an entity with a relational database. In particular, through the element "Ta-
ble2Entity" of the "RelationDB" palette, which is graphically represented by a dashed oriented arrow, the mod-
eler creates a link between a specific relational database table ("UserDB") and the selected entity ("User").

Figure 7: Mapping conceptual entities to document databases

Page 10 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Figure 8: Mapping conceptual entities to graph databases
Mapping conceptual models to document databases Figure 7 shows how to map a conceptual entity in a doc-
ument database. In particular, by means of the element "Collection2Entity" belonging to the "DocumentDB"
palette, which is graphically represented by a dashed oriented arrow, the modeler creates a link between a
specific document database collection ("ReviewsDB") and the selected entity ("Review").

Mapping conceptual models to graph databases Figure 8 shows an example of mapping a conceptual entity
in a graph database. In particular, by means of the element "Entity2GraphNode" of the "GraphDB" palette,
which is graphically represented by a dashed oriented arrow, the modeler creates a link between a specific
graph database node ("ConcordanceDB") with the selected entity ("Product").

Mapping conceptual models to key-value databases Figure 9 shows how to map a conceptual entity in a key-
value database. In the shown example, the "KeyValueElements2Entity" element of the "KeyValueDB" palette is
used to create a link between the "PhotoDB" key-value database and the selected "Product" entity.

Figure 9: Mapping conceptual entities to key-value databases

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 11

D2.4 TyphonML Modelling Tools

4 Evolving TyphonML models

Consistently with the work being done in WP6, TyphonML provides modelers with constructs that are neces-
sary to specify changes to be operated on existing TyphonML specifications and thus, to consequently trigger
the needed data migration procedures. The supported change operators are those shown in Table 1. It is im-
portant to remark that this document discusses the available change operators from a syntactical point of view.
The semantics of the available operators in terms of the actual actions that are executed to perform the spec-
ified changes is detailed in the deliverable D6.2 [3]. The change operators shown in Table 1 are supported
by both the textual and graphical editors even though the usage of the former is recommended from a usabil-
ity point of view. However, it is important to remark that the TyphonML modeling tools as they have been
designed can be easily "fine-tuned" to improve or even extend the support for the needed change operators.

TyphonML element Level Change operator

Entity Conceptual

Add
Remove
Rename
Split
Migrate
Merge

Relationship Conceptual

Add
Remove
Rename
Enable containment
Disable containment
Enable bidirectional relationship
Disable bidirectional relationship
Change cardinality

Attribute Conceptual

Add
Change type
Remove
Rename

Table Logical/Database Rename

Index Logical/Database

Add
Remove
Add component
Remove component

Collection Logical/Database
Rename
Add Index
Drop Index

Table 1: Supported change operators (from D6.2 [3])

4.1 Change operators for conceptual elements

Listing 7 shows an example of change specifications involving conceptual elements. The available operators
permit modelers to add new entities (line 2), remove existing ones (line 10), and rename them (line 11).
Modelers have also the possibility to split an existing entity (line 12) or merge two of them in a new one (line
20). TyphonML permits also to move a conceptual entity from a given database type to another one (line 21).

1 changeOperators [

2 add entity newEntityName {

3 attributes {

4 att1 : String

5 }

6 relations {

Page 12 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

7 ref1 -> User

8 }

9 }

10 remove entity MyEntity

11 rename entity Product as Item

12 split entity Order {

13 left entity LeftOrderEntityName {

14 //...

15 }

16 right entity RightOrderEntityName {

17 //...

18 }

19 }

20 merge entities Review Comment as NewName

21 migrate Comment to RelationalDatabase

22

23 add relation newRelationName to Order -> Product [0..*]

24 remove relation "Review.product"

25 rename relation "Product.orders" as newOrdersName

26 change cardinality "User.comments" as 1..*
27 change containment "User.comments" as false

28

29 add attribute newAttributeName:String to User

30 remove attribute "Product.description"

31 rename attribute "CreditCard.number" as num

32 change attribute "Order.totalAmount" type Real

33

34 rename table "RelationalDatabase.UserDB" as UserT

35 create tableindex "RelationalDatabase.CreditCardT" {

36 "CreditCard.number"

37 }

38

39 drop tableindex "RelationalDatabase.OrderT"

40

41 extends tableindex "RelationalDatabase.UserDB" {

42 "User.surname"

43 }

44

45 reduce tableindex "RelationalDatabase.UserDB" {

46 "User.name"

47 }

48]

Listing 7: Specification of TyphonML model changes

It is also possible to change existing TyphonML specifications with respect to conceptual relationships. In
particular, relationships can be added (see the added relation named newRelationName in the entity Order and
typed Product as defined at line 23), removed (line 24), and renamed (line 25). Moreover, it is also possible to
change their cardinality (line 26) and specify different containment prescriptions (line 27). Similarly, it is also
possible to add, remove, and rename attributes in conceptual entities, and even change their type as shown at
lines 29-32 in Listing 7.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 13

D2.4 TyphonML Modelling Tools

4.2 Change operators for logical elements

TyphonML enables also the specification of changes to be operated at logical level. For instance, concerning
modifications that modelers might want to operate on tables in case of relational databases, it is possible to re-
name existing tables (e.g., see line 34 at Listing 7), and also to specify changes on corresponding table indexes.
In particular, modelers can add and remove table indexes (see line 35 and 39, respectively), further than chang-
ing the attributes that are considered for indexing the contents of the table being modified. In particular, the
keywords extends tableindex and reduce tableindex are used to add and remove, respectively attributes
in the index of the referred table (see lines 41–45 in Listing 7).

Similarly, TyphonML provides modelers with the change operators that can be applied at logical level on
database systems based on collections. In particular, the changes that are supported are collection renaming,
addition, and removal of collection indexes.

4.3 Evolving TyphonML models by means of the graphical editor

TyphonML model evolutions can be specified also with the graphical editor. By means of a dedicated evolution
mode, models can be changed only with the prescribed operators. The editing of a model in evolution mode
implies that the starting base is a model already created and deployed, so this visualization mode is provided
without palettes.

Figure 10: Changing the containment specification of a conceptual relation

By clicking with the right button on an element the system automatically recognizes the type of referring el-
ement and based on this it shows an ad-hoc contextual menu with all and only the possible change operators
that can be applied on the selected element (e.g., see Fig. 10). A change operator may need additional infor-
mation as in the case of a renaming in which the new name is requested through a contextual window to enter
such information (e.g., see Fig. 11).

As a result, a list of change operator applications is obtained as in the model fragment shown in Fig. 12.

Page 14 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Figure 11: Renaming a conceptual relation

Figure 12: Ordered application of change operators

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 15

D2.4 TyphonML Modelling Tools

5 Validating TyphonML models

TyphonML modeling tools have been designed also to give early feedback about the specified models. In
particular, models are analysed by a set of checks each devoted to the discovery of possible issues. Even
though the analysis tools include already ready to use checks, it is possible to extend the system by specifying
additional checks that modelers might want to add for the particular models at hand.

The conceived analysis tools have been developed by relying on Epsilon [1], which is a platform providing
a consistent and interoperable task-specific languages. To enable TyphonML validations, we rely on Epsilon
Object Language (EOL)4 and Epsilon Validation Language (EVL)5 provided by the Epsilon platform.

EOL is an imperative programming language for creating, querying, and modifying EMF models. The primary
aim of that language is to provide a reusable set of common model management facilities, atop which task-
specific languages can be implemented. However, EOL can also be used as a general-purpose stand-alone
model management language for automating tasks that do not fall into the patterns targeted by task-specific
languages.

EVL is a validation language built on top of EOL and provides a number of features such as support for detailed
user feedback, constraint dependency management, semi-automatic transactional inconsistency resolution and
(as it is based on EOL) access to multiple models of diverse metamodels and technologies. The aim of EVL
is to contribute model validation capabilities to Epsilon. More specifically, EVL can be used to specify and
evaluate constraints on models of arbitrary metamodels and modelling technologies. EVL also supports de-
pendencies between constraints (e.g., if constraint A fails, the constraint B cannot be evaluated), customizable
error messages to be displayed to the user and specification of fixes (in EOL) which users can invoke to repair
inconsistencies. Also, as EVL builds on EOL, it can evaluate inter-model constraints (unlike OCL). Finally,
the language permits to handle the severity of validation result:

• Constraints: they are used to capture critical errors that invalidate the model;
• Critiques: they are used to capture non-critical situations that do not invalidate the model, but should

nevertheless be addressed by the user to enhance the quality of the model.

TyphonML modeling supporting tools are endowed with predefined EVL and EOL specifications, even though
developers can possibly extend the set of available checks by creating new EVL and EOL files (or extending
existing ones). Among the primary checks already available in the corpus there are those related to the Entity

metaclass. For instance, we are currently able to check if:

"One of the specified entity references is a containment and it is also mapped to a relational
database."

Although this is not a real error, the system still provides a warning to the modeler, informing her that prob-
ably the best choice would be to avoid mapping this containment to a relational database, and use document
databases instead.

Figure 13 shows a fragment of the EVL specification implementing the previously presented check: the key-
word context is used to specify the element type that has to be considered for evaluating the check. In case
there are satisfied checks, a warning is triggered, and the related message is shown.

4https://www.eclipse.org/epsilon/doc/eol/
5https://www.eclipse.org/epsilon/doc/evl/

Page 16 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://www.eclipse.org/epsilon/doc/eol/
https://www.eclipse.org/epsilon/doc/evl/

D2.4 TyphonML Modelling Tools

Figure 13: EVL fragment

Figure 14: EOL fragment

The actual check is implemented in EOL as shown in Fig. 14. The defined operation evaluates for each Entity

instance if among all its references there are some in which the attribute isContainment is set to true and in
that case, it evaluates whether the corresponding entity is mapped to a relational database.

For some checks, it is also possible to provide modelers with automated fixes or suggestions. For instance,
Fig. 15 shows a warning related to a matched entity and gives the possibility to apply a fixing procedure to
solve the problem. One way to solve the issue would be to change the mapping of the considered entity from
relational to document database. The EOL implementation of the operation shown in Fig. 16 and called in
the fix section of the EVL specification given at line 14 in Fig. 13, first of all it eliminates the Table element
corresponding to the matched entity and then it creates a new collection in the available document database.

The addition of new checks can be done in two ways: either by inserting a new rule (of the critique type, or
constraint) within a context already created (like the one for the entities in Fig. 13), or creating a new EVL file
by inserting it in the folder containing all the .evl files.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 17

D2.4 TyphonML Modelling Tools

Figure 15: Fix Option from Eclipse Validation View

Figure 16: Fix example implementation

Page 18 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

6 Generating and using the microservice-based TyphonML API

As presented in deliverable D2.3 [2], TyphonML models are used as input to generate a microservice-based
API provide developers with the needed functionalities to programmatically develop CRUD operations on the
modeled systems. The architecture conceived to manage any polystore is shown in Fig. 17. Specifically, for
each modeled database system the corresponding microservice is created, which is responsible of managing
all the conceptual entities that have been assigned to that database system.

The architecture consists of a Client Library that is a library that can be used by the developers and interacts
with the interfaces exposed by the API Gateway. The API Gateway is the service that knows where all the
services managing the conceptual entities are deployed, and thus it is aware of where the client requests have
to be forwarded to. The system is also able to manage relationships occurring among entities stored in different
database systems, and thus managed by different microservices.

Figure 17: Proposed microservice-based architecture for the Polystore API

The actual implementation of the architecture shown in Fig. 17 relies on the Spring Framework6. In particular,
Spring Data7 plays a key role in the proposed approach since it is used to actually access data. Such a layer
can be replaced if needed without disrupting the generation of the proposed polystore access infrastructure.

The generation of the data access layer out of an input TyphonML model has been developed as a set of
coordinated model-to-code transformations. To this end, Acceleo 8 has been adopted. It is an open-source
code project belonging to the Eclipse ecosystem 9 that allows developers to employ model-driven principles to
build applications.

Once the API Gateway, the microservices for each Entity, and the Client Library have been created, then
it is possible to programmatically use the TyphonML API. Figure 18 shows an explanatory example of the
TyphonML API usage. Specifically, a new user is created and given a name through the user.setName() in-
vocation; a list of orders is given (setOrders()) and it is created by retrieving through the "orderService" the

6https://spring.io/
7https://spring.io/projects/spring-data
8https://www.eclipse.org/acceleo/
9https://www.eclipse.org/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 19

https://spring.io/
https://spring.io/projects/spring-data
https://www.eclipse.org/acceleo/
https://www.eclipse.org/

D2.4 TyphonML Modelling Tools

Figure 18: TyphonML API example: User creation with 1xN relation

first 5 ones in ascending order. In the end, through the service userService.create() the user, with the relative
relations to retrieved orders (1xN relation), is created and saved in the database.

Another example is the one presented in Fig. 19 in which there is another example of creation involving NxN
relationship. A product (product) is created to which different orders are assigned (product.setOrders()), and
order (order) is created to which different products are assigned (order.setProducts()). The modification of the

Figure 19: TyphonML API example: Product creation with NxN relation

Page 20 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Figure 20: TyphonML API example: Product update

Figure 21: TyphonML API example: Product delete

elements is also managed (see Fig. 20). In the example, through the productService.update(productToUpdate)
method the modification of the element passed as input is made. Finally, deletion is also managed. In Fig. 21
the simple deletion is highlighted through the delete method (productService.delete(productToDelete)) which
cascades eliminate the selected element with all the relative references.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 21

D2.4 TyphonML Modelling Tools

7 Conclusions

In this document we presented the TyphonML modeling tools that have been developed in the context of WP2
and by interacting with the other WPs and partners of the projects including the use case providers, which have
given the requirements of the expected technological offerings. The techniques and tools developed in WP2
have been defined to address the requirements that are reported in Table 2.

Req.
ID

Req. description Addressing deliv-
erable

4 The polystore modelling language shall support storing recorded trend displays D2.3
6 The polystore modelling language shall support field types and operations to handle

spatial data and perform basic operations for ingestion, querying and filtering
D2.3

7 The polystore modelling language shall support a field type that allows to store a
Latitude and Longitude values (e.g. "LatLon")

D2.3

8 The polystore modelling language shall support a field type that allows to store a non-
geodetic, general X and Y coordinates (e.g. SpatialType)

D2.3

9 The polystore modelling language shall support a field type that allows to store a
bounding box (e.g. "BoundingBox")

D2.3

10 The polystore modelling language should provide data types to store binary field D2.3
11 The polystore modelling language should allow to handle records with binary fields

of up to 2 GB
D2.3

12 The polystore modelling language should support additional spatial types as defined
by the Lucene interface

D2.3

13 The polystore modelling language should implement the spatial data types and related
operations as defined by "OpenGIS Implementation Standard for Geographic infor-
mation - Simple feature access - Part 2: SQL option"

D2.3

D2 TyphonML shall enable the specification of data models by means of both textual and
graphical syntaxes

D2.4

D3 Facilities for generating CRUD APIs from data models specified in TyphonML shall
be provided

D2.3

D4 Definition of custom data types to be used in TyphonML data models shall be sup-
ported

D2.3

D5 Specification of data types that are needed for applying text-specific analysis (e.g. text,
video, recordings) shall be supporte

D2.3

D6 The definition of structured data types (e.g. sentences, facts, entities, events) that can
be extracted from text and represented in TyphonML shall be supported

D2.2

D7 The specification of non-functional requirements that will instruct the deployment and
querying of the modelled data models shall be supported

D2.5

D8 TyphonML supporting tools shall detect inconsistent data models(e.g. data entities in
relational databases that refer to inexistent collections in document-based data models

D2.4, D2.5

D9 TyphonML supporting tools may provide modellers with early feedback about the
specified data models (i.e. deployment feasibility of the modelled data with respect to
the actual resource availabilities)

D2.4, D2.5

D10 TyphonML editors should be instructed to resolve inconsistencies in the data schema
that might be due to system and data evolutions

D2.4

D11 The data migration tools shall define the list of schema changes that can be automati-
cally managed for coupled evolution goals. Such a catalogue of schema changes will
be enforced during TyphonML editing sessions that are devoted only to schema evo-
lution purposes

D2.3

Table 2: Summary of the requirements related to WP2

Page 22 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

The requirements in bold are those that were not satisfied yet before the work presented in this document as
discussed in the following:

D2 - TyphonML shall enable the specification of data models by means of both textual and graphical syntaxes
This requirement is now addressed by the textual and graphical modeling tools presented in Section 2 and
Section 3, respectively.

D8 - TyphonML supporting tools shall detect inconsistent data models (e.g. data entities in relational databases
that refer to inexistent collections in document-based data models) This requirement is satisfied by the func-
tionalities presented in Section 5 that permit to perform early checks on the TyphonML model being specified.
Further work investigating the development of additional checks and reasoning tools will be presented in the
deliverable D2.5 – TyphonML Model Analysis and Reasoning Tools.

D9 - TyphonML supporting tools may provide modellers with early feedback about the specified data models
(i.e. deployment feasibility of the modelled data with respect to the actual resource availabilities) The devel-
oped validation infrastructure is extensible and as mentioned for the previous requirement, additional early
feedback checks will be presented in D2.5.

D10 - TyphonML editors should be instructed to resolve inconsistencies in the data schema that might be due
to system and data evolutions The fulfilment of such requirement involves a tight collaboration between WP2
and WP6. In particular, the schema and data evolution operators being conceived in WP6 have to be shown
to modelers that will trigger them directly from the TyphonML modeling tools. Such an integration has been
investigated and implemented as presented in Section 4.

For future work we will continue the collaboration with the TYPHON partners especially in the context of Task
2.4: Analysis and Reasoning on TyphonML Models. Moreover, even though this document is supposed to be
related to the final version of the TyphonML modeling tools, we will continue their development and support
for properly addressing eventual requests for improvement coming from the different tool users.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 23

D2.4 TyphonML Modelling Tools

A Installation and use of the TyphonML modelling tools

To use the previously presented TyphonML modeling tools, the following technical dependencies need to be
satisfied as shown in Fig. 22:

• Java 8;
• Sirius: available as Open Source, Sirius is integrated into annual versions of the Eclipse platform10.
• Acceleo11: transformation model-to-model;
• Xtext12: an open-source framework for development of programming languages and domain-specific

languages;
• Epsilon13: a family of languages and tools for code generation, model-to-model transformation, model

validation, comparison, migration and refactoring that work out of the box with EMF and other types of
models.

Figure 22: Sirius Plugins Dependency

Once the TyphonML project14 is cloned in the local machine, it is necessary to import the project as Existing
Projects into Workspace (see Fig. 23).

Once all the projects have been imported, we can launch the second instance of Eclipse by right-clicking on a
project. (see Fig. 24)

In the new Eclipse instance create a new Modeling Project (see Fig. 25) and give it a name.

10https://www.obeodesigner.com/en/product/sirius
11https://www.eclipse.org/acceleo/download.html
12https://www.eclipse.org/Xtext/
13https://www.eclipse.org/epsilon/
14GitHub repository link: https://github.com/typhon-project/typhonml

Page 24 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://www.obeodesigner.com/en/product/sirius
https://www.eclipse.org/acceleo/download.html
https://www.eclipse.org/Xtext/
https://www.eclipse.org/epsilon/
https://github.com/typhon-project/typhonml

D2.4 TyphonML Modelling Tools

Figure 23: Import Existing Projects

Be sure you have the "Modeling" view open (which is the default) and in that new project automatically you
have the *.aird file which contains Sirius representations data (see Fig. 26).

Now you can either create a new model from scratch or import an existing model. Let’s assume we want to
create one from scratch. We create a file with the .tml extension (it is the extension chosen for TyphonML
Xtext files). Convert the project in Xtext Project (See Fig. 27)

Now you can associate the graphical representation to this textual one. Go to the .aird file and as "Representa-
tions" select "TyphonML" and create new one selecting, in the next window, the root element "Model" of the
model we are creating with the Xtext textual representation. Give to this graphical representation a name.

At this point you can create (both graphically and textually) a new TyphonML model. Each change made and
saved on one of the two representations will automatically reflect on the other (See Fig. 29).

Finally, a new entry has been prepared in the Eclipse context menu which allows you to create an .xmi file and
another entry that allows you to create all the microservices architecture starting from the .tml file (see Fig.
30).

In Fig. 31 there are the results of the contextual menu.

As far as the evolution mode is concerned, to enable the relative graphical representation, you have to go back
to the .aird file and select "evolution mode" (see Fig. 32), create a new one giving it a name. At this point, we
will also have the graphical representation of the evolution mode both with the textual representation (first .tml
file) and with the new graphical representation.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 25

D2.4 TyphonML Modelling Tools

Figure 24: Start second Eclipse Instance

Figure 25: New Modeling Project

Page 26 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Figure 26: Sirius .aird

Figure 27: Convert Project to Xtext Project

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 27

D2.4 TyphonML Modelling Tools

Figure 28: Create new TyphonML graphical representation

Figure 29: TyphonML Graphical and Textual representation

Page 28 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

Figure 30: TyphonML Contextual Menu

Figure 31: TyphonML Contextual Menu result

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 29

D2.4 TyphonML Modelling Tools

Figure 32: TyphonML Evolution Mode

Page 30 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D2.4 TyphonML Modelling Tools

References

[1] Dimitrios Kolovos, Louis Rose, Richard Paige, and Antonio Garcıa-Domınguez. The epsilon book. Struc-
ture, 178:1–10, 2010.

[2] The University of L’Aquila. D2.1 Hybrid Polystore Modelling Language (Final Version), 2018.

[3] The University of Namur. D6.2 – Hybrid Polystore Schema Evolution Methodology and Tools, 2018.

[4] The Edge Hill University. D2.2 – Text Modelling Extension, 2018.

[5] The Open Group with contributions from all partners. D1.1 - Project Requirements, 2018.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 31

	Introduction
	Structure of the deliverable

	The TyphonML textual editor
	Datatypes
	Defining conceptual entities

	Enabling natural language processing
	Mapping conceptual models to relational databases
	Mapping conceptual models to document databases
	Mapping conceptual models to graph databases
	Mapping conceptual models to key-value databases

	The TyphonML graphical editor
	Evolving TyphonML models
	Change operators for conceptual elements
	Change operators for logical elements
	Evolving TyphonML models by means of the graphical editor

	Validating TyphonML models
	Generating and using the microservice-based TyphonML API
	Conclusions
	Installation and use of the TyphonML modelling tools

