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Abstract

Research on empirical software engineering has increasingly been conducted

by analysing and measuring vast amounts of software systems. Hundreds,

thousands and even millions of systems have been (and are) considered by re-

searchers, and often within the same study, in order to test theories, demonstrate

approaches or run prediction models. A much less investigated aspect is whether

the collected metrics might be context-specific, or whether systems should be

better analysed in clusters.

The objectives of this study are (i) to define a set of clustering techniques that

might be used to group similar software systems, and (ii) to evaluate whether

a suite of well-known object-oriented metrics is context-specific, and its values

differ along the defined clusters.

We group software systems based on three different clustering techniques,

and we collect the values of the metrics suite in each cluster. We then test

whether clusters are statistically different between each other, using the Kolgom-

orov-Smirnov (KS) hypothesis testing.

Our results show that, for two of the used techniques, the KS null hypothesis

(e.g., the clusters come from the same population) is rejected for most of the
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metrics chosen: the clusters that we extracted, based on application domains,

show statistically different structural properties.

The implications for researchers can be profound: metrics and their inter-

pretation might be more sensitive to context than acknowledged so far, and

application domains represent a promising filter to cluster similar systems.

Keywords: FOSS, Application Domains, Latent Dirichlet Allocation, Machine

Learning, Expert Opinions, OO (object-oriented)

1. Introduction

Research on empirical software engineering has increasingly used data made

available in online repositories or collective efforts. The latest trends for re-

searchers is to gather “as much data as possible” to (i) prevent bias in the

representation of a small sample, (ii) work with a sample as close as the popula-

tion itself, and (iii) showcase the performance of existing or new tools in treating

vast amount of data.

Considering the MSR1 series of events as an example, its researchers have

constantly grown the number of systems analysed in their papers. During its

2017 edition, for instance, the joint set of papers of the main track (i.e., 64 papers10

overall) collected and analysed altogether over 3 million software systems. A

10-year trend with the number of software systems jointly analysed by the MSR

papers is shown in Figure 1. One of the papers alone amassed some 900K

systems as its case studies [1].

These always larger samples of systems have mostly overlooked their primary

distinctive characteristics, their diversity, context, uniqueness and application

domain. Very few works have clearly stated the similarity (or differences) be-

tween systems in the interpretation of the results, either by explicitly proposing

explanations based on application domains [2, 3, 4], or by sampling the projects

to be analysed from a specific, restricted topic [5].20

1http://www.msrconf.org/
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This present paper is based on the assumptions that a specific software

system might be similar to others to some degree, and that there are different

approaches to defining their similarity. By applying one of those approaches,

a sample of software systems might get divided into subsets (or clusters), each

containing similar systems, and showing differences with other clusters.

Understanding the similarities among software projects allows for reusing

of source code and prototyping, or choosing alternative implementations [6,

7], thereby improving software quality [8]. Having access to similar software

projects helps developers speed up their development process. By looking at

similar Open Source Software (OSS) projects, for example, developers are able30

to learn how relevant classes are implemented, and in some certain extent, to

reuse useful source code [6, 7, 9].

Figure 1: Cumulative number of FOSS projects per year

In the past, two software projects have been considered to be similar if they

implement some features being described by the same abstraction, even though

they may contain various functionalities for different domains [10]. In this paper,

we group similar systems into clusters based on different approaches: first, we

group them based on the similarities detected by the CrossSim algorithm [11],
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which has been developed as part of the EU H2020 CROSSMINER project2.

Systems are similar, or connected, if they have a limited distance [11]. Second,

we use the clusters as manually extracted by [12, 13], that have grouped 5,00040

software systems into 6 clusters. Third, we use a Python implementation of

the Latent Dirichlet Allocation (LDA) approach to automatically extract the

descriptions of a project, and we group similar systems based on that extraction.

For all the clusters identified in this paper, we evaluated the metrics of

an object-oriented suite, based on the work by Chidamber and Kemerer [14].

The metrics extracted for the projects are well-known structural OO attributes

(NOC, DIT, CBO, RFC, WMC, LCOM, NIM, IFANIN, NIV) [15]. The aim of

this paper is to answer the following research question (RQ):

RQ: are OO metrics sensitive to the context of their clusters?

In other words, do different software clusters exhibit different OO metrics?50

To answer that research question, we articulate this paper in the following parts:

Section 2 proposes a meta-model of the reasoning behind the need for clustering

software systems. Section 3 deals with the related work. Section 4 describes

the three approaches used to define an ecosystem that we use throughout this

paper. Section 5 illustrates the datasets used. Section 6 provides the results

of the statistical tests, that aim to reject, for every OO metric m, the null

hypothesis H0,m: the samples are drawn from the same population.

Section 7 discusses the findings, while Section 8 describes the threats to

validity. Finally, Section 9 summarises and concludes the paper.

2. Reasons for clustering60

Clustering is deemed to be among the fundamental techniques in knowledge

mining and information retrieval [16, 17]. In the context of software engineer-

ing, clustering has been used in the past, for reverse engineering and software

2https://www.crossminer.org
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maintenance tasks, with the aim to categorise software artifacts [18, 19]. The

concept of similarity is a fundamental building block for any clustering tech-

nique, as well as a key issue in various contexts, such as detecting cloned code

[20, 21, 22, 23], software plagiarism [24], or reducing test suite size in model-

based testing [25, 26]. According to Walenstein et al. [27], a workable common

understanding for software similarity is as follows: “the degree to which two

distinct programs are similar is related to how precisely they are alike.” Never-70

theless, a globally exact and shared definition of similarity has not been agreed

upon yet: depending on the method used to compare items, various types of

similarity may be identified.

Clustering techniques have been exploited in other fields including biology to

classify plants or animals according to their properties [28], and geology to clas-

sify observed earthquake epicenters and thus to identify dangerous zones [29]. A

clustering algorithm attempts to distribute objects into groups of similar objects

so as the similarity between one pair of objects in a cluster is higher than that

between one of the objects to any objects in a different cluster [30, 31]. In recent

years, several clustering methods have been developed to solve a wide range of80

issues [32]. Among others, there are hierarchical and partitional clustering algo-

rithms [31]. The former use a criterion function to identify partitions while the

latter try to group similar partitions. Among partitioning-based algorithms,

there are K-Means, K-Medoids, CLARA, CLARANS [33, 34, 35]. Among

hierarchical-based algorithms, there are BIRCH [36], CURE [37], ROCK [38],

Chameleon [39], to name a few.

Several existing clustering techniques share the property that they can be

applied when it is possible to specify a proximity (or distance) measure that al-

lows one to assess if elements to be clustered are mutually similar or dissimilar.

The basic idea is that the similarity level of two elements is inversely propor-90

tional to their distance. The definition of the proximity measure is a key issue

in almost all clustering techniques and it depends on many factors including the

considered application domain, available data, and goals. Once the proximity

measure has been defined, it is possible to produce a proximity matrix for the
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related objects. Given that there are n objects to be clustered, an n× n prox-

imity matrix needs to be generated containing all the pairwise similarities or

dissimilarities between the considered objects.

Recommender systems rely heavily on similarity metrics to suggest suitable

and meaningful items for a given item [6, 40, 41, 42]. For example, for third-

party library recommendation, it is important to find similar projects to a given100

project, and mine libraries from the most similar projects [43]. Similarities are

used as a base by both content-based and collaborative-filtering recommender

systems to choose the most suitable and meaningful items for a given user [6]. In

this sense, failing to compute similarities means concurrently adding a decline

in the overall performance of these systems.

Nevertheless, measuring similarities between software systems has been con-

sidered as a daunting task [10, 44]. Furthermore, considering the heterogeneous

nature of artifacts in open source software repositories, similarity computation

becomes more complicated as many artifacts and several cross relationships

prevail. As a result, similarity computation among software and projects has110

attracted considerable interest from many research groups. In recent years, sev-

eral approaches have been proposed to solve the problem of software similarity

computation. Many of them deal with similarity for software systems, others are

designed for computing similarities among open source software projects. Such

approaches are domain specific and they can be classified according to the set

of mined features. In particular, there are two main types of software similarity

computation techniques as follows [44]. The first is called low-level similarity

and it is calculated by considering low-level data, e.g., source code, byte code,

function calls, API reference, etc. Meanwhile, high-level similarity is based on

the metadata of the analysed projects e.g., similarities in readme files, textual120

descriptions, star events, to name a few.
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3. Related Work

While the primary goal of empirical papers is to achieve the generality of

the results, the domain, context and uniqueness of a software system have not

been considered very often by empirical software engineering research. As in

the example reported in [45], the extensive study of all JSON parsers available

would find similarities between them or common patterns. That type of study

would focus on one particular language (JSON), one specific domain (parsers)

and inevitably draw limited conclusions. On the other hand, considering the

“parsers” domain (but without focusing on one single language) would show the130

common characteristics of developing that type of systems irrespective of their

language.

So far, several tools that capture the topics of software systems have been

proposed. Among others, CLAN [46], CrossSim [11], MUDAblue [47] and Re-

poPal [48] are some of the most cited tools, with various levels of precision and

accuracy. Even if such tools are available for researchers and practitioners, their

usage to practically inform development has been so far quite limited.

Wermelinger and Yu [49] posit that presenting two datasets from the same

domain allows for future comparative studies and facilitates the reuse of data ex-

traction and processing scripts. On increasing the external validity of empirical140

result findings, German et al. [50] have also highlighted the need to investigate

in particular systems belonging to different domains.

Prior research has shown that the number and size of open-source projects

are growing exponentially and open-source projects are becoming more diverse

by expanding into different domains [51, 52]. In view of this and to reduce the

effort required in manual categorisation of software projects, Tian et al. [53]

proposed a new technique based on text mining to categorise software projects

irrespective of the programming language used in their development.

Callau et al. [54] studied the use of dynamic programming features such

as method and class creation and removal at run-time e.g., during testing and150

how much these features are actually used in practice, whether some are used
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more than others, and in which kinds of projects. Their results revealed three

application domains that rely heavily on the usage of dynamic programming

features: (i) user interface applications, which make heavy usage of dynamic

method invocation as a lightweight form of an event notification system, (ii)

frameworks that communicate with databases or implement object databases,

which make heavy usage of serialisation and de-serialisation of objects and (iii)

low-level system support code that uses object field reads and writes to imple-

ment copy operations, saving the state of the system to disk, and converting

numbers and strings from objects to compact bit representation.160

In a different study [55], software coupling metrics were studied based on

software categories to identify any impact of software categories on coupling

metrics (CBO, DAC3, ATFD4 and AC5). The authors emphasised the need to

pay special attention to software categories when comparing systems in distinct

categories with predefined thresholds already available in the literature. For

example, empirical results from the study revealed that out of ten distinct cat-

egories selected (including Audio and Video, Graphics, Security and Games)

there is a different level of coupling among the different categories. Games had

a higher coupling level while the Development category showed less coupling

than others. Statistical tests conducted at a 0.01 significance level supported170

these results which indicate the importance of analysing software engineering

research results by domain/category.

Linares-Vasquez et al. [56] analysed the energy usage of API method calls in

55 different Android apps from different categories such as Tools, Music, Media

and others. Results revealed GUI and image manipulation apps made use of

the highest number of energy-greedy API method calls followed by Database

apps. Both categories represented 60% of the energy-greedy APIs in the studied

sample. In [54], authors made a study on the usage of dynamic programming

3Data Abstraction Coupling
4Access to Foreign Data
5Afferent Coupling
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features in terms of the significant energy and memory usage of software in

the Databases category wherein database-based software made heavy usage of180

serialisation and de-serialisation of objects.

In a related study, the focus is on energy management in Android applica-

tions [57] with an analysis of different power management commits (including

Power Adaptation, Power Consumption Improvement, Power Usage Monitoring,

Optimizing Wake Lock, Adding Wake Lock and Bug Fix and Code Refinement).

The studied projects were clustered into 15 categories. The top three categories

in terms of the number of power management commits were found to be Con-

nectivity, Development and Games.

Previous studies [58, 59, 60] revealed that projects from different domains

use exception handling differently, and that poor practices in writing excep-190

tion handling code are widespread. In a study on Java projects by Osman

et al. [2] they aimed to answer the following research question: “Is there any

difference in the evolution of exception handling between projects belonging

to different domains?” The researchers manually categorised 30 projects into

6 domains, namely compilers, content management systems, editors/viewers,

web frameworks, testing frameworks, and parser libraries. Their observations

showed significant distinctions in the evolution of exception handling between

these domains, like the usage of java.lang.Exception and custom exceptions

in catch blocks. Concretely, content management systems consistently have

more exception handling code and throw more custom exceptions, as opposed200

to editors/viewers, which have less error handling code and mainly use standard

exceptions instead.

In general, different results have been observed in prior empirical studies

when more attention is paid to the categorisation of analysed software projects.

4. Techniques of clustering

In this section we present the three approaches that we used to cluster the

systems in our samples: the one illustrated in Section 4.1 clusters projects based
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on how they are linked to external libraries and components.

The technique described in Section 4.2 is based on 6 pre-determined cate-

gories, and the subjective attribution of each project to a cluster. The approach210

is based on the work proposed by the authors of [12, 13].

The last technique, illustrated in Section 4.3, uses the LDA algorithm to

first extract the topics of the software systems, and then it assigns each project

to one cluster.

We provide the replication packages, and the datasets with our results, in

three collections available online6.

4.1. Pairwise similarity via CrossSim

Linked Data is a representation method that allows for the interlinking and

semantic querying of data [61]. The core of Linked Data is an RDF7 graph that

is made up of several nodes and oriented links to represent the semantic relation-220

ships among various artifacts. Thanks to this feature, the representation paves

the way for various computations. One of the main applications of RDF is simi-

larity computation for supporting recommender systems [41]. We designed and

implemented CrossSim [11] (Cross Project Relationships for Computing Open

Source Software Similarity), a tool for computing similarity among OSS projects

by considering the analogy of typical applications of RDF graphs and the prob-

lem of detecting the similarity of open source projects. CrossSim exploits graphs

for representing different types of relationships in the OSS ecosystem. In par-

ticular, with the adoption of the graph representation, CrossSim transforms the

relationships among non-human artifacts, e.g., API utilisations, source code,230

interactions, and humans (e.g., developers) into a mathematically computable

format, i.e., one that facilitates various types of computation techniques.

6CrossSim collection: https://figshare.com/s/0cd6925bf1601e2f0b74,

Categorised collection: https://figshare.com/s/bd506aff8bff2b6ce29f,

LDA-based collection: https://figshare.com/s/93f5d997484705a937de
7https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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Figure 2: Overview of the CrossSim approach.

The architecture of CrossSim is depicted in Figure 2: the rectangles represent

artifacts, whereas the ovals represent activities that are automatically performed

by the developed CrossSim tooling. In particular, the approach imports project

data from existing OSS repositories and represents them in a graph-based rep-

resentation by means of the OSS Ecosystem Representation module. Depending

on the considered repository (and thus to the information that is available for

each project) the graph structure to be generated has to be properly configured.

For instance, in case of GitHub, specific configurations have to be specified in240

order to enable the representation in the target graphs of the stars assigned to

each project. Such a configuration is repository specific, e.g., SourceForge does

not provide the star based system available in GitHub.

The Graph similarity module implements the similarity algorithm that ap-

plied on the source graph-based representation of the input ecosystems generates

matrices representing the similarity value for each pair of the input projects.

To demonstrate the utilisation of graphs in an OSS ecosystem, we consider

an excerpt of the dependencies for a pair of OSS projects, namely project#1

and project#2 in Figure 3. Using dependency information extracted from

source code and the corresponding metadata, this graph can be properly built250

to represent the two projects as a whole. In this figure, project#1 contains

code file HttpSocket.java and project#2 contains FtpSocket.java with the

corresponding edges being marked with the semantic predicate hasSourceCode.

Both source code files implement interface#1 being marked by the semantic

predicate implements. Project#1 and project#2 are also connected via other

semantic paths, such as API isUsedBy.
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Based on the graph structure, one can exploit nodes, links and the mutual re-

lationships to compute similarity using existing graph similarity algorithms. To

the best of our knowledge, there exist several metrics for computing similarity in

graphs [62, 40, 41]. Considering Figure 3, we can compute the similarity between260

project#1 and project#2 with regards to the semantic paths between them,

e.g., the two-hop path using hasSourceCode and implements (Figure 4), or

the one-hop path using API isUsedBy. For example, concerning isUsedBy, the

two projects are considered to be similar since with the predicate both projects

originate from API#1. The hypothesis is based on the fact that the projects are

aiming at creating common functionalities by using common libraries [10, 63].

CrossSim adopts SimRank [64] as the mechanism for computing similarities

among OSS graph nodes. SimRank has been developed to calculate similarities

based on mutual relationships between graph nodes. Considering two nodes, the

more similar nodes point to them, the more similar the two nodes are. For future270

work, other similarity algorithms can also be flexibly integrated into CrossSim,

as long as they are designed for graphs.
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Figure 3: Sample graph-based representation of OSS ecosystems.
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Figure 4: Similarity between OSS projects with respect to source implementation.

4.2. Clustering based on projects descriptions

As the second approach to clustering, we consider the work proposed in [12,

13]. The authors state that “we manually classified the domain of each system

in our dataset. Initially, the first author of this paper inspected the description of

the top-200 repositories to provide a first list of application domains, distributed

over six domain types.”

As the clustering unit, this approach uses the collection of software systems

sharing the same application domain. The relevance of application domains as280

a driving factor for specific development approaches has been long recognised:

in Glass and Vessey’s seminal paper it is mentioned that “it has become clear

that application-independent techniques and tools must be supplemented with an

application-specific approach” [65].

The projects here are the Java subset of the data dump available at https://

zenodo.org/record/804474#.XDi1S9_njCK. The dataset contains 5,000 project

names hosted on GitHub, and the authors pre-determined the following six cat-

egories:

• Application Software (AS)

• Documentation (D)290
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• Non Web Libraries And Frameworks (NW)

• Software Tools (ST)

• System Software (SS)

• Web Libraries And Frameworks (WL)

In the original paper, each project was assigned, by one of the authors, to

one of those six categories, based on its characteristics. The assignment was

later validated by a second author. Albeit the process was triaged, it is difficult

to exactly reproduce the original classification.

The work done in [12, 13] is a unique case of third-party assignment of

software projects to categories. Therefore, we make use of the sample, and the300

classification, and treat it as a ‘manual’ clustering technique. On the other hand,

we cannot fully replicate their clustering approach in the other two samples: the

knowledge to assign the projects to the six categories is mostly informal, and

not fully reproducible.

4.3. LDA-informed clustering

This third clustering technique is similar to what presented in Section 4.2,

but it adds an automated step to extract the topics contained in a software

system. This should be helpful for the reproducibility of the approach.

For this purpose, we extracted the lexical content (e.g., its corpus) of each

Java class in two ways: (i) by considering their class names; and (ii) by parsing310

their code and considering the variable names, comments and keywords.

The code of each Java class is converted into a text corpus where each line

contains elements of the implementation of a class. The corpus in this case

(“dictionary” of terms derived from comments, keywords in source code) is

built at the class level of granularity [66]. The corpus includes the class name,

variable and method names and comments for each class.

Pre-processing of the system corpus is needed to eliminate common key-

words, stop words, split and to stem class names [67]. Also, we do not consider
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Figure 5: UrSQLEntry.java Source Code Snippet.

as a term any of the Java-specific keywords (e.g., if, then, switch, etc.)8. Ad-

ditionally, the camelCase or PascalCase notations are first decoupled in their320

components (e.g., the class constuctor InvalidRequestTest produces the terms

invalid, request and test). Second, each term goes through a phase of stemming

and lemmatisation, to extract its root.

As an example of this lexical extraction, for the lines of code shown in Figure

5 (the UrSQLEntry.java class from the UrSQL project), we derive the following

corpus: {ur sql entri kei valu kei valu ur sql entiti entiti ur sql entri ur sql entri

queri split queri split ur sql control kei valu separ kei split valu split kei kei valu

valu}.

For each system, all the Java classes were reduced to a corpus of terms. All

these terms were then considered to create a model implementing the Latent330

Dirichlet Allocation (LDA) algorithm. Python is the programming language

used to program the models, and the gensim NLP package9 helped by the

machine learning side.

8The complete list of Java reserved words that we considered is available at https://en.

wikipedia.org/wiki/List_of_Java_keywords. The String keyword was also considered as a

reserved word, and excluded from the text parsing.
9https://radimrehurek.com/gensim/
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To extract the main topics emerging from the corpus of a software project, we

utilize LDA which is a topic-modeling technique [68]. Each document is featured

using a Natural Language Processing approach termed the Term-frequency-

inverse document frequency (TF-IDF). In NLP, TF-IDF [69] is used to measure

the weight of a term within documents (in our case, the source code of a class).

With TF-IDF, words are assigned weights, as the product of term frequency and

inverse document frequency. We use TF-IDF as a pre-processing step to LDA:340

the result is a representation of the source code contained in the Java classes,

where the same terms can appear multiple times (see Figure 5).

As an example, for the okhttp project10, the LDA model produces the fol-

lowing topics from the corpus of its Java classes:

Topic 0: 0.003*”stream” + 0.003*”bodi” + 0.003*”header” + 0.003*”content” +

0.003*”id” + 0.002*”benchmark” + 0.002*”type” + 0.002*”ssl” + 0.002*”socket” +

0.002*”stori”

Topic 1: 0.002*”entiti” + 0.002*”url” + 0.002*”proxi” + 0.002*”slack” + 0.002*”event”

+ 0.001*”frame” + 0.001*”filter” + 0.001*”client” + 0.001*”equal” + 0.001*”session”

Topic 2: 0.005*”cooki” + 0.004*”header” + 0.004*”interceptor” + 0.003*”chain” +

0.003*”url” + 0.002*”bodi” + 0.002*”certif” + 0.002*”content” + 0.002*”client” +

0.002*”timeout”

Topic 3: 0.005*”cach” + 0.004*”socket” + 0.004*”connect” + 0.004*”bodi” +

0.003*”rout” + 0.003*”server” + 0.003*”web” + 0.003*”header” + 0.003*”client” +

0.003*”url”

Topic 4: 0.006*”event” + 0.006*”socket” + 0.005*”certif” + 0.005*”address” +

0.005*”cach” + 0.004*”file” + 0.003*”deleg” + 0.003*”connect” + 0.003*”server” +

0.003*”inet”

The topics extracted from the projects were finally assigned to a cate-

gory by two of the authors of this paper: in case of disagreement, a discus-

sion was held to reconcile the views. As the list of categories, we adopted in

fact what has been historically used by the SourceForge.net repository to

10https://github.com/square/okhttp
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classify the hosted projects: {1:Communications, 2:Database, 3:Desktop Envi-350

ronment, 4:Education, 5:Formats and Protocols, 6:Games/Entertainment, 7:In-

ternet, 8:Mobile, 9:Multimedia, 10:Office/Business, 11:Other/Nonlisted Topic,

12:Printing, 13:Religion and Philosophy, 14:Scientific/Engineering, 15:Secu-

rity, 16:Social sciences, 17:Software Development, 18:System, 19:Terminals,

20:Text Editors}.

5. Datasets used for the Empirical Analysis

This section presents the datasets that have been used for performing the

empirical analysis. In particular, the dataset used by CrossSim is presented

in Section 5.1. The categorised dataset as presented in [12] is summarized in

Section 5.2. The dataset used to apply the LDA-based technique is presented360

in Section 5.3.

5.1. CrossSim dataset

The overall dataset gathered by the CROSSMINER project to evaluate the

CrossSim approach consists of 580 GitHub Java projects. Such a dataset was

collected from GitHub by considering the following requirements: (i) being

GitHub Java projects; (ii) providing the specification of their dependencies by

means of pom.xml or .gradle files (iii) having at least 9 external dependencies;

(iv) having the README.md file available; (v) possessing at least 20 stars11.

The collected dataset and the CrossSim tool are available online for public usage

[70].370

For the purpose of our analysis, 6 pairs of software systems were extracted

from the CROSSMINER dataset. The criteria of selection were:

• maximum similarity between projects within the pairs;

• minimum similarity between projects of different pairs.

The outcome of the extraction satisfying such criteria is shown in Table 1.

11The motivations behind such requirements are explained in [11]
12Available at git://github.com/psaravan/JamsMusicPlayer.git
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Cluster Projects Similarity (be-

tween pairs)

AB
A = JamsMusicPlayer12 1.95E-04

B = ACEMusicPlayer13

CD
C = sparql-plugin14

0.0027
D = neo4j-sparql-extension15

EF
E = jpmml-model16

7.32E-04
F = visitante17

GH
G = c2d-engine18

5.47E-04
H = LeanEngine-Server19

IJ
I = RestOpenGov20

0.00112
J = elasticsearch-analysis-lemmagen21

KL
K = jcabi-email22

0.0048
L = jcabi-jdbc23

Table 1: Clusters of projects identified by CrossSim.

5.2. Categorised dataset (from [13])

From the original, overall sample of 5,000 projects, we extracted all the

Java projects (520 projects overall), while maintaining the information about

their assigned category. Considering the Java subset, and using the categories

provided, we have the distribution of projects within the ecosystems as shown in380

Table 2. We extracted the metrics for each project, then clustered those metrics

based on the six domains identified above. A statistical test was run between

each pair of domains, and per OO metric, to determine if the metrics come from

the same population.

13Available at git://github.com/C-Aniruddh/ACEMusicPlayer.git
14Available at git://github.com/neo4j-contrib/sparql-plugin.git
15Available at git://github.com/niclashoyer/neo4j-sparql-extension.git
16Available at git://github.com/jpmml/jpmml-model.git
17Available at git://github.com/pranab/visitante.git
18Available at git://github.com/lycying/c2d-engine.git
19Available at git://github.com/PeterKnego/LeanEngine-Server.git
20Available at git://github.com/RestOpenGov/RestOpenGov.git
21Available at git://github.com/vhyza/elasticsearch-analysis-lemmagen.git
22Available at git://github.com/jcabi/jcabi-email.git
23Available at git://github.com/jcabi/jcabi-jdbc.git
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Category Projects

Application Software 30

Documentation 48

Non Web Libraries And Frameworks 342

Software Tools 49

System Software 26

Web Libraries And Frameworks 25

Table 2: Number of Java projects in the categories extracted in [13].

5.3. LDA-based dataset

Leveraging GitHub, we collected the project IDs of the 100 most successful

Java projects hosted on GitHub as case studies24. The “success” of the projects

is determined by the number of stars received by the community of GitHub users

and developers, as a sign of appreciation. We used this approach to stratified

sampling because the projects obtained by this filter are likely to be used by a390

large pool of users [71], and potentially have a good intake of new developers [72].

Smaller projects are less likely to be sampled by this stratified approach. The

source code of the selected systems was downloaded for the analysis: only the

‘master’ branch of the systems was considered. The boxplots in Figure 6 show

the basic characteristics of the sample analysed: the distributions of duration

of the projects (in days), the number of distinct developers (as authors) and

the total number of commits are plotted. In terms of most likely value of each

distribution, we observed that the median in the project’s duration is 2002

days; the median number of developers is 87; while the median in the number

of commits is 1204.400

Figure 7 shows the distribution of application domains in the sample of 100

Java projects, as extracted by the LDA algorithm, then assigned by the authors

of the paper, finally agreed between authors to ensure consistency.

24The list of projects is available at https://figshare.com/s/c627af8e9e496a9025c4
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Figure 6: Distribution of duration (in days), number of developers (as authors) and number

of commits in the sample analysed with the LDA approach

20



Figure 7: Domains extracted with the LDA approach.

A few of the basic domains, as used by SourceForge, are completely absent

from our sample: Desktop Environment, Education or Text Editor (and a few

others) are not represented when sampling projects based on their success (e.g.,

usage or further development).

On the other hand, there are 4 domains that are more prominent than oth-

ers: Internet (with 27 projects), Mobile (11), Multimedia (11) and Software

Development (33). For the statistical analysis, we use only these 4 domains to410

find differences between the distributions of metrics: using smaller sized clus-

ters would suffer from a small effect size, and the relative results would be less

relevant.

6. Results

In this section we report the results of the analysis using the three clustering

techniques: the one implemented by the CrossSim algorithm (Section 6.1); the

mostly manual one (Section 6.2); and the semi-automated one (Section 6.3).

For each dataset and clustering technique, we adopted the Kolgomorov-

Smirnov (KS) [73] test to detect whether the distribution of software metrics in

the compared domains are from the same population. The appropriate Bonfer-420

roni correction [74] was applied, due to the multiple tests being carried out at
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the same time.

6.1. CrossSim dataset – Results

In order to evaluate the rejection of (or the inability to reject) the null

hypothesis, we performed the KS statistical tests for each of the 6 project pairs

(AB, CD, EF, GH, IJ and KL) described in Section 5.1. We assigned a standard

threshold value α = 0.05 for the sensitivity of the test; the Bonferroni correction

resulted in αB = 0.0034137.

In Table 3 we summarise the tests by reporting the p-value of each KS test.

We must reject the null hypothesis (i.e., “the two samples are drawn from the430

same distribution”) if the p-value of the KS test is lower than the corrected αB .

This is done for each metric, and for each pair of ecosystems. As an example,

the KS test for the IFANIN metric, and the pair of ecosystems AB and CD

produces a p-value = 1: we reject the null hypothesis that the values of the

IFANIN metric come from the same population, when considering the AB and

CD ecosystems.

The results of each KS test (in the form of p-values) are summarised in

Table 3: as an example, we rejected all the null hypotheses for the EF and

IJ clusters: none of the OO attributes can be considered to be sampled from

different populations. The most dissimilar pair of clusters appears to be the440

AB and GH pairs: for most of the structural OO metrics, we could reject the

relative null hypothesis, therefore the IFANIN, NIM, NIV, WMC, RFC and DIT

values can be considered as drawn from different populations.

In general however, for most of the metrics, and for most of the pairs of

ecosystems, the null hypothesis cannot be rejected. When we grouped projects

based on the type of dependencies that they have, it is in general difficult to

conclude that the clusters are structurally different from each other.

This result is not surprising: the projects paired by CrossSim are associated

by what type of external libraries they use, while they could be implementing

very different features. They could be based on very different domains, but still450

use a similar set of external libraries.
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IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

ABvCD 1 0.000 0.882 0.000 0.083
2.95E-

06

2.51E-

11
0.043 0.025

ABvEF 0.874
3.02E-

07
0.000 0.006

3.51E-

05

1.72E-

14
0

3.02E-

09
0.894

ABvGH 1.11E-10 0.009 0.051
7.07E-

06

3.16E-

05

4.41E-

07
0 0 0.009

ABvIJ 0.077 0.146 0.339 0.192 0.640 0.533 0.371
1.19E-

08
0.497

ABvKL 1.33E-15
1.17E-

10
0.497 0.156 0.001 0.116 0.122 0 0.067

CDvEF 1.000 0.030 0.999 0.001 0.014 0.001 0.000 0.285 0.030

CDvGH 0.197
1.95E-

06
1 0.001 0.031

1.46E-

05
0.013 0.000 0.002

CDvIJ 0.558 0.004 0.967 0.005 0.672 0.000
6.43E-

06
0.206 0.789

CDvKL 2.13E-06 0.128 1
8.69E-

05
0.126

1.14E-

05

9.31E-

10

9.31E-

10
0.001

EFvGH 0.001
6.13E-

05
0.272 0.151 0.995 0.012 0.001 0.000 0.267

EFvIJ 0.337 0.484 0.999 0.363 0.155 0.190 0.014 0.040 0.333

EFvKL 2.17E-11
0.004672276

0.979 0.567 0.002 0.185 0.000 0 0.154

GHvIJ 0.926 0.753 0.984 0.475 0.294 0.539 0.000 0.000 0.095

GHvKL 3.17E-06
5.60E-

08
0.999 0.084 0.006 0.093

2.14E-

10
0 0.516

IJvKL 0.001 0.003 0.885 0.128 0.303 0.647 0.367
5.67E-

05
0.033

Table 3: Results of the pair-wise statistical tests of the OO metrics analysed: AB, CD, EF,

GH, IJ and KL refer to the pairs of projects.

6.2. Categorised dataset (from [13]) – Results

The same approach to statistical testing was also applied for the second

dataset. Table 4 shows the results of the statistical analysis: as above, each cell

contains the p-value of the Kolgomorov-Smirnov (KS) test between two subsets

of the dataset. For example, the ASvD row contains the p-values of the KS test

between the projects in the Application Software domain, and the projects in

the Documentation domain. The null hypothesis (‘the two samples come from

the same distribution’) can be rejected if the p-value is larger than a threshold α.

For our tests, we selected α = 0.05: since multiple tests were run at the same460

time, a Bonferroni correction was needed, obtaining a corrected threshold of

αB = 0.0033 (i.e., 0.05/15 where 15 is the number of multiple tests performed).

We have highlighted in Table 4 the specific OO attribute where we reject

the null hypothesis. As it can be seen, the NOC, DIT and LCOM attributes
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can be considered from the same distribution, but only considering the subsets

of projects in the Application Software domain and those in the System Soft-

ware domain. Similarly, for the NOC attribute, and considering the Non Web

Libraries And Frameworks and Web Libraries And Frameworks clusters.

Considering all the other tests, the resulting p-values allow for a general

rejection of the null hypothesis: we can assume that the values of the attributes470

come from different populations.

This is an interesting result: the clusters generated by a manual inspection

of the projects’ characteristics result in pools of attributes that are structurally

different from each other. As an example, the Software Tools (ST) category

rejects all the null hypotheses, for all the selected OO attributes, when compared

to any other category. This places the Software Tools cluster as a standalone

category, with specific (and unique) characteristics.

6.3. LDA-based dataset – Results

Similarly to what has been done in Section 6.2, we clustered the projects in

the categories proposed in SourceForge. The OO data was then extracted, per480

cluster, and one KS test executed per pair of clusters, and for all the metrics.

Table 5 summarises the tests by reporting the p-value of each test. High-

IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

ASvD 0 0 0 0 0 0 0 0 4.76E-06

ASvNW 0 0 0 3.23E-12 0 2.22E-16 0 0 0

ASvSS 1.37E-06 0 0.0247 0 1.14E-10 0 0 0.476 0.204

ASvST 0 0 0 0 0 0 0 0 0

ASvWL 0 0 0 0 0 0 0 0 0

DvNW 0 0 1.79E-05 0 2.80E-14 0 0 0 0

DvSS 0 0 0 0 0 0 0 0 5.83E-10

DvST 0 0 4.66E-06 0 0 0 0 0 0

DvWL 0 0 4.90E-06 0 0 0 0 0 0

NWvSS 0 0 0 0 0 0 0 0 0

NWvST 0 0 0 0 6.14E-07 0 0 0 0

NWvWL 0 0 0.344 0 0 0 0 0 0

SSvWL 0 0 0 0 0 0 0 0 0

STvSS 0 0 0 0 0 0 0 0 0

STvWL 0 0 0 0 0 0 0 0 0

Table 4: Results of the pair-wise statistical tests of the OO metrics analysed: AS refers to

Application Software, D to Documentation, NW to Non Web Libraries And Frameworks, ST

to Software Tools, SS to System Software, and WL to Web Libraries And Frameworks.
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IFANIN CBO NOC NIM NIV WMC RFC DIT LCOM

IvSD 0 0 0 0 0 0 0 0 0

IvMob 0 0 0 0 0 0 0 0 0

IvMM 0 0 0 0 0 0 0 0 0

SDvMob
3.29E-

09
0 0.868

9.24E-

4
1.9E-4

3.27E-

05
0

5.55E-

16

7.12E-

4

MMvMob
6.68E-

06
0 0.999

1.36E-

11
0

1.59E-

09

2.62E-

13
0.57

4.08E-

10

MMvSD 0.015
8.42E-

09

4.56E-

05
0 0 0 0 0 0

Table 5: Results of the pair-wise statistical tests of the OO metrics analysed: I refers to

Internet, SD to Software Development, Mob to Mobile and MM to Multimedia

lighted are the metrics for which the p-value does not allow us to reject the null

hypothesis (‘the two samples come from the same distribution’) based on α =

0.05 and a Bonferroni correction of 0.0083333.

As shown in Table 5, and similarly to the results in Table 4, the NOC

attribute does not always allow for a clear differentiation between clusters. In

two cases, we could not reject the null hypothesis: the values of the NOC

attribute can be considered as drawn from the same population, at least in the

cases of the SD and Mob comparison, and the MM and Mob comparison. For the490

other comparisons, we can reject all the other null hypotheses: we can conclude

that OO attributes are extracted from different populations, when considering

the clusters formed by an LDA-informed approach.

It is worth noting that for both Categorised dataset, and the LDA-informed

dataset, the DIT and NOC attributes are less sensitive to identify differences

between samples. This is partly due to the fact that these attributes reflect a

similar characteristic of the structure of Java software (i.e., inheritance). Shared

design principles suggest that the DIT attribute should be kept low. This is true

for two main reasons:

• The deeper a class is in the hierarchy, the greater the total number of meth-500

ods it is likely to inherit [75], making its behaviour less predictable [76].

• Khalid et al. state that “DIT is directly proportional to complexity” (i.e.,

an increased DIT will lead to higher maintenance efforts) [77].

On the other hand, the NOC attribute should also be kept low: a large CBO
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increases the complexity of the system, and it adversely affects other quality

factors, such as maintainability, testability and reusability [78].

7. Discussion

In this section we add further insights as part of our discussion: in light of

our evidence, we studied past research works, specifically focused on the OO

metrics that we used, and we reflected on the importance of clustering.510

In a prior study [79], we collected empirical results showing that projects

from the same domain exhibit common structural properties in terms of the

C&K metrics. In this work, we have expanded on those results: the results that

we have gathered above indicate that the projects clustered around the domains

(i.e., 2 of the 3 clustering techniques presented above) show indeed a difference

in the structural metrics. For interested stakeholders, this can imply that the

structure of a software system (and its soundness) depends on domain-based

factors common to projects in the same domain. For example, projects from

different domains making use of exception handling differently [60, 58].

The discussion that we present here takes into consideration the correlations520

between the OO metrics that we utilised above. The work reported by [80] has

already shown some correlation between pairs of metrics from the C&K suite,

for example, CBO and RFC, and RFC and LCOM. We want to know whether

these correlations change sensibly, when considering specific clusters. If indeed

there were a correlation in all the clusters analysed above, it would suggest an

increased probability of falsely rejecting a null hypothesis within the clusters

shown in Figure 7.

In the analysis below, we report on the correlation study between pairs

of OO metrics, and when clustered by application domain. The value of the

correlation coefficient lies in the range [−1; 1], where −1 indicates a strong530

negative correlation and 1 indicates a strong positive correlation. We adapt the

categorisation for correlation coefficients used in [81] ([0−0.1] to be insignificant,

[0.1− 0.3] low, [0.3− 0.5] moderate, [0.5− 0.7] large, [0.7− 0.9] very large, and
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[0.9−1] almost perfect) if the rank correlation coefficient proves to be statistically

significant at the α = 0.01 level.

Table 6 shows the correlations among pairs of OO metrics, when considering

the projects in the domain-driven clusters identified by the LDA technique. It

becomes clear that the metrics show collinearity, but depending on the cluster

considered, this collinearity could be stronger or weaker. An example of this is

between the RFC and WMC attributes: for the projects in the Internet cluster,540

this association has a medium (M) strength; the association becomes large (L)

when considering the projects in the Mobile cluster; for the projects in the

MultiMedia category, the association becomes almost perfect (AP), thus being

larger than 0.9; when considering the projects in the Software Development

cluster, on the other hand, such collinearity becomes small (s), hence isolating

these projects, and their characteristics, from the rest of the sample.

Considering the definition of the RFC and WMC attributes, a stronger cor-

relation implies a larger complexity of the code: when the number of methods

(i.e., WMC) grows in a Java class, the response for that class (i.e., the RFC)

also grows. This is also an indication that more testing will be needed for that550

class: the projects in the MultiMedia category show a different behaviour to

those belonging to the Software Development category.

Based on these results, it is possible to summarise our correlation findings

as follows:

The correlation among OO metrics can be extremely sensitive to appli-

cation domains

Thus, according to such a finding, evaluating the quality of a sytsem becomes

also dependent on what type of domain a project belongs to. For instance, the

metrics one should consider to analyse gaming software should be different from

those used to assess the quality of security software. For instance, the latter

is mainly characterized by incremental contributions aiming at fixing already560

existing functionalities and making them more stable and secure. Such a par-

ticular attention to stability and security aspects can be less peculiar for gaming
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Internet

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO -i

NOC -i i

NIM s M i

NIV i M i M

WMC i M i AP M

RFC -i M i M s M

DIT -s i -i i -i i L

LCOM -i s i M M M M s

Mobile

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO i

NOC -i i

NIM s M s

NIV i M i XL

WMC i M s AP XL

RFC -i s s L M L

DIT -s s s s s s L

LCOM -i M s L L L M s

Multimedia

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO i

NOC i i

NIM i s i

NIV i M i M

WMC -i L i s i

RFC -i L i s i AP

DIT -M s i s i i s

LCOM i s i M L i i s

Software Development

IFANIN CBO NOC NIM NIV WMC RFC DIT

CBO i

NOC -i i

NIM i M i

NIV i i i i

WMC i M i AP i

RFC -i s i s i s

DIT -s i -i i i i M

LCOM -i M i M i M s s

Table 6: Correlation between OO pairs, after grouping projects within domain-driven clusters.

i stands for insignificant correlation; M for medium; L for large; XL for very large; and AP

for almost perfect.
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software and consequently OO metrics, e.g., LOCs are less appropriate for as-

sessing the quality of security software or in general of mission critical software

systems.

7.1. Clusters and their maturity

The maturity of the considered application domain (as cluster) is another

factor that can interfere with the analysis performed by means of OO met-

rics. Emerging domains are characterized by a plethora of new applications

even though while the domain becomes more “stable” and mature, only those570

applications that managed to create a community (and thus that are actually

used and maintained) eventually survive. Thus, the population of the resulting

application domain is characterized by OO metrics that might be different from

those of the initial population:

Emerging new application domains might show a larger variability in

their structural metrics, in comparison to established domains.

Finally, some domains consist of reusable libraries and frameworks instead

of ready-to-use applications. For instance, in the domain of automation testing,

we can have JUnit, Selenium, Jasmin, etc. Thus, the domain consists of a popu-

lation that overall shares only the same goal, but it is likely to be characterized

by an insignificant correlation in terms of OO metrics.580

This research is part of a wider context, and it requires further multi-

disciplinary investigation: the similarity of software systems should follow the

same approach of compiling a biological taxonomy, where systems (or parts of)

are given a place (or rank) in a hierarchy. Lower levels share (OO-related) at-

tributes with higher levels in the same branch, whereas different branches of

the taxonomy show the highest degree of dissimilarity. Such a taxonomy could

have a massive impact in how practitioners and researchers work and develop

software systems: ad-hoc techniques and tools would be needed and tailored to

domain-specific constraints. This has already started to emerge for the software

engineering techniques around gaming development [82]: we envisage that a590
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similar approach would be needed when new domains become established, and

their boundaries are clearer.

8. Threats to validity

8.1. External validity

Threats to external validity refer to the extent to which the results of our

study can be generalized. The projects we have analysed come from publicly

available repositories and the used clustering techniques also come from al-

ready validated works. However, we cannot claim that the resulting conclusion

concerning the considered null hypotheses is generalisable, even though the per-

formed experiments provide us with an acceptable confidence about the general600

validity of the reached conclusions.

8.2. Internal validity

Threats to internal validity concern any confounding factor that could in-

fluence our findings. We attempted to avoid any bias in the building of the

ecosystems. To this end, we applied CrossSim and the LDA-based approach

by means of the corresponding supporting tools without any manual interven-

tion. However, the tools we have used and implemented could be defective. To

counter this threat, we have run several manual assessments and counter-checks.

Concerning the approach in [13] we used the categories as they are presented in

the original work without any change.610

8.3. Construct validity

It pertains to any factor that can compromise the validity of inferences that

observations or measurement tools actually represent or measure the construct

being investigated. A potential threat to construct validity is related to the

size of the analysed data. However, the datasets that have been considered for

the experiments come from the original works proposing CrossSim, the LDA-

based approach, and the categorization in [13]. Thus, we built on those datasets
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that were considered to be big enough for experimenting and validating such

approaches.

The second threat to construct validity is based on the fact that the three620

approaches proposed use three different samples of data. We could not use the

same sample because the approach described in Section 4.2 above is not fully

reproducible. On the other hand, the LDA-based approach was replicated for

the CrossSim sample, and we concluded that the clusters grouped by CrossSim

represent the type of external libraries they use, while they could be implement-

ing very different features. They could be based on very different domains, but

still use a similar set of external libraries.

9. Conclusion

This paper presented three techniques to cluster software projects, and eval-

uated how the clusters differ from each other, when comparing their internal630

characteristics. The null hypothesis that we attempted to reject is that all the

clusters come from the same population. As metrics of assessment, we adopted

a suite of well known OO attributes.

As the first technique we adopted the CrossSim algorithm [11], that draws

a similarity between projects based on their usage of external libraries. Inter-

estingly enough, with this technique we could not reject the null hypothesis:

projects might still be internally similar even if the CrossSim algorithms detect

a large distance between them.

The second technique was based on a subjective classification, based on

the description of a software project. With this technique we found a strong640

foundation for rejecting the null hypothesis, although the steps of the clustering

process are not easily reproducible.

The third technique was also based on categories, but it automatically ex-

tracted topics from a software systems, before assigning them to categories. Also

in this case, we could reject the null hypothesis for most of the OO metrics.

The implications of these findings can be profound: software projects can
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manifest different characteristics, based on the domain or cluster that they

belong to. Empirical findings might need readjustment, and tailoring to one or

another cluster or domain, to fit with other findings in the same cluster.
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