%a TYPHON

‘u’/ POLYGLOT AND HYBRID PERSISTENCE
ARCHITECTURES FOR BIG DATA ANALYTICS

Project Number 780251

D5.5 Event Publishing and Monitoring Architecture
(Final Version)

Version 1.0
8 July 2020
Final

Public Distribution

University of York

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L’Aquila, University
of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the TYPHON Project Partners.

D5.5 Event Publishing and Monitoring Architecture (Final Version)

@TvyPHON

PROJECT PARTNER CONTACT INFORMATION

Alpha Bank

Vasilis Kapordelis

40 Stadiou Street

102 52 Athens

Greece

Tel: +30 210 517 5974

E-mail: vasileios.kapordelis@alpha.gr

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Centrum Wiskunde & Informatica
Tijs van der Storm

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 9333

E-mail: storm@cwi.nl

CLMS

Antonis Mygiakis
Mavrommataion 39

104 34 Athens

Greece

Tel: +30 210 619 9058

E-mail: a.mygiakis@clmsuk.com

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L.39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

GMYV Aerospace and Defence
Almudena Sanchez Gonzélez
Calle Isaac Newton 11

28760 Tres Cantos

Spain

Tel: +34 91 807 2100

E-mail: asanchez@gmv.com

OTE

Theodoros E. Mavroeidakos
99 Kifissias Avenue

151 24 Athens

Greece

Tel: +30 697 814 7618
E-mail: tmavroeid@ote.gr

SWAT.Engineering

Davy Landman

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 633754110

E-mail: davy.landman@swat.engineering

The Open Group

Scott Hansen

Rond Point Schuman 6, 5% Floor
1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of L’Aquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univag.it

University of Namur

Anthony Cleve

Rue de Bruxelles 61

5000 Namur

Belgium

Tel: +32 8 172 4963

E-mail: anthony.cleve@unamur.be

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Volkswagen

Behrang Monajemi

Berliner Ring 2

38440 Wolfsburg

Germany

Tel: +49 5361 9-994313

E-mail: behrang.monajemi@volkswagen.de

Page ii

Version 1.0
Confidentiality: Public Distribution

8 July 2020

@veHon D5.5 Event Publishing and Monitoring Architecture (Final Version)

DOCUMENT CONTROL
Version Status Date
0.1 First draft 27/05/2020
0.2 First full draft 17/06/2020
0.3 Changes based on internal feedback 02/07/2020
0.4 Changes based on internal feedback 03/07/2020
1.0 Incorporated suggestions from internal reviewers 08/07/2020
8 July 2020 Version 1.0 Page iii

Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

TABLE OF CONTENTS
B IR 1o o0 T L) ot) 1
1.1 Overview. 1
1.2 Document Structure......ocoveecsseersenes 1
2. Data Analytics EVENtS SIIUCLUTIE ... sssssssssssssssssssssssssssssasassssasas
2.1 Metamodel. 2
3. Data Event Publishing and Processing Architecture 4
3.1 Overview. 4
3.1.1 B3] 7 R0 oy 4 T) TP 6
3.2 Event AUtROTISALIONovverereeerrererseserisseerianes
3.2.1 Overview ...
3.2.2 Implementation...
3.2.3 Orchestrator..............
3.24 Lo 0 A 00 ol =) ¢ 1PN 14
3.2.5 RELATEA WOTK .. ieureeeeueeeeeeneesseesseeessesssesssessssesssessssesssess s sss bbb b E SRR RS E et 14
3.3 Deserialisation.. 15
33.1 Handling of References to 0ther ENtITIEs. ... eceeeeesssssssesseesssssssessssssssssssesssssssssssssssssssssssssssssssssssssssns 16
34 Change Capture
341 REIAEEA WOTK oureeeeeeseeseeesseesseessesssesseesssesssessssessses s ssse s s s s s8R R8RSR E R ER R LRSS R LR R Rt E Rt
3.4.2 Delete and Update Statements...
3.4.3 Inverted Selectscoereeerreerreeenne
3.5 Requirements Coverage 18
2% SN D T3 5] ()7 11 1<) 1 L, 20
4.1 Docker 20
4.2 Kubernetes
421 Generate deployment scripts USING TYPRONDL ... sseesssssssssssesesssesssesssssssssssssssssssessans
4.2.2 Deploy Apache Kafka and Flink in remote Kubernetes clustercoueenneeene.
423 Evaluate availability and status of deployments in remote Kubernetes cluster
4.2.4 Access the Typhon Polystore SErvice WD Ul ceeeeseeeesseesssesssssssssssesssssssssssssssssssssssssssssssssssssssassssses
LS 01 1 L1 X () 30
5.1 E-Shop Simulator
51.1 Introduction.........
5.1.2 Implementation
5.1.3 Authorisation Chain Scalability Evaluation using the Simulatoreeeneeeeesesseesseeseees 34
5.1.4 Analytics Scalability Evaluation using the Simulator....... s ssesssesseees 37
6. Conclusions And Future Work 41
AppendixA 42
Analytics How-To Guide 42
30 Q2] Q=T LD U E PP 42
Work with the ANalYtiCS COMPOIENL. ... iuueereeureeseresseesseessseessesssesssessssssssessssssssesssessssssssasssessssess s sssesssessssesssessssssssasssessssssssnssas 42
WWTTEE ANALYEICS c.evueeureseeesseesseeseeesseesseesssesssassssesssesssessssesss s ss e s e s R RS E R E R E RS ER SRR SRR R LR R R E LR R AR bR 43
Writing Analytics COAe With FINK ...t seseceseessecsssessessseesssesssessssssssesssessssssssesssssssssssssssssssssessssssssssssesssss s sssssssssssssssns 45
Appendix B 46
Installation of kubectl cOMMAaNA-IINE T00] ...t sss s sess s sees s neen 46
Deploy remote KUDEINETES POOL... . ieeecerresseesseesseessessseessssssessssssssessssssssessssssssasssessss s s s st s s s s e s s s s s s baneen 46
Page iv Version 1.0 8 July 2020

Confidentiality: Public Distribution

@veHon D5.5 Event Publishing and Monitoring Architecture (Final Version)

Download cloud provider Kubernetes CONfigUIation. ... creeeesmeeseessssssesssesssesssessssesssessssssssessssssssssssassssssssesssessasees 47
123100 00T = 0 1, 49
TABLE OF FIGURES
Figure 1: The Data EVeNnt MetamOdelcooouiiiiiiiiiiiicieeee ettt sttt e et e ensesseenseeneensesneenseenean 2
Figure 2: The structure of the deserialised post event for the query "from Product p select p.name where p.@id
e 3 17K ST SP 4
Figure 3: The proposed architecture for polystore event-based analytics................ccccooieiiiiiiiiiicciccee e 5
Figure 4: An example of an auUthorisSed @VeNtooiiiiiiiiii et 9
Figure 5: An example of @ reJECLEd @VENT...............ocuiiiiiiii ettt et e b e te e ae et e e s beeaeeeabeesaneeareas 10
Figure 6: Example of using Flink's Side OULPULS...............ccoiiiiiiiiieeee ettt sne s 10
Figure 7: Example of events flow in the authorisation task chain using side outputs.................ccccoooieviiieiiiiiicciee. 11
Figure 8: The authorisation chain metamodeloccooiiiiiii e 12
Figure 9: Generated Typhon Analytics Kubernetes configurationfilesc.cooiiiiiiiiice e, 23
Figure 10: Typhon Analytics Kubernetes deployment state machine diagramcccoooeeiiiiiiniicccc e, 25
Figure 11: Access Kubernetes cluster dashboard web Ulcccooiiiiiiiiie e 27
Figure 12: Kubernetes web Ul dashboard Workload Overview Page.ccocooviiieriirienieniereeeeee e 28
Figure 13: Typhon Polystore Service web Ul IogIN PAge.c..ooviiiiiiiiiiccecce ettt 30
Figure 14: Total execution time for the authorisation chain experiment...................ccoccooiiiiiiiiinieneeee 36
Figure 15: Workers’ memory consumption in the authorisation chain scalability experimentccccoee. 36
Figure 16: Workers' CPU utilisation for the authorisation chain scalability experiment...................c.cccooeiiiiiiiiiennn. 37
Figure 17: Master's average memory and CPU utilisation for the authorisation chain scalability experiment 37
Figure 18: Execution time for the five simulations in the analytics scalability experiment...................cccccoiiiinnnn. 39
Figure 19: Workers’ memory consumption in the analytics scalability experiment.................c.ccooooiiiiieiiiiiicceene, 40
Figure 20: Workers’ CPU use in the analytics scalability experimentccooiiiiiiieii e 40
Figure 21: Average master's memory and CPU utilisation for the analytics scenario scalability experiment.............. 41
Figure 22: TyphonDL wizard that enables analytics.................ccoieiiiiiiiiic e e 42
Figure 23: Create @ NeW ANAlYHICS SCENATIOooouiiiiiiiiieiieeeee ettt ettt e b e te e s e seensesseenseeseenes 43
Figure 24: The "analyze" method that needs to be implemented..................c.cccoiiiiiiiiiiiici e 44
Figure 25: A runner class for the analytics SCENANIOocieiiiiiiiiicee e 44
Figure 26: The runner class implementation.................ccooiiiiiiiiiiiiee ettt sse e ne s 45
Figure 27: An eXample aNalytiCs SCENAKIOccviiiiiiiiiiiiecieete ettt ettt e s b e e eteestb e e teeease e beeeaseeseseaseessseeareas 46
Figure 28: Deploy remote Kubernetes pool (Step 1 0f 2).ocoviiiiiiiiiiiii et 47
Figure 29: Deploy remote Kubernetes pool (SteP 2 0f 2).ccoviiiiiiiiiiiiceceeeeee et e 47
Figure 30: Download cloud provider Kubernetes cluster YAML-based configuration file.ccccooieiininnnnne. 48
LIST OF TABLES
Table 1: Data analysis and monitoring use case requirements tablecccoooiiiiiiiii e 18
Table 2: Data analysis and monitoring component requirements tablec.ccooeiiiiiiiiccin e 19
Table 3: Typhon Analytics Kubernetes configuration parameters in TyphonDLc.cccceoiiiiiiiiiieccie e, 23
Table 4: Summary of input to the authorisation chain scalability experiment...................c.ccocoooiiiiiiiiiiciicecee, 35
Table 5: Summary of input to the analytics scenario scalability experiment.....................ccccoooiiiiiiiiiiicce e, 39
TABLE OF LISTINGS
Listing 1: The java orchestrator for the authorisation tasks executioncocoiiiiiiiiiiericeeee e 12
Listing 2: The orchestrator M2T transformation.................occooiiiiiiiiiiiiee et 13
Listing 3: Docker-compose YAML file for Kafka/Zookeeper parametrisation and instantiation 22
Listing 4: Typhon Analytics Kubernetes deployment shell script (deploy.sh) generated by TyphonDL........................ 26
Listing 5: The E-Commerce TYPhONML MOTEL............ccooiiiiiiiiiiiiceeee ettt b e et e e e ete e eabeesaeeeares 32
LiSting 6: A "BrOWSING" AGENTooiiiiiiiieieeiieie ettt ettt et et e et e et e st e e e e e st e seeatenseentesseessesseensesseenseeseensesseeneenseenes 33
Listing 7: The config.properties file for the e-shop sSimulatorcccooiiiiiiiiiic e 34
8 July 2020 Version 1.0 Page v

Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

EXECUTIVE SUMMARY

This document presents the final version of the high-performance architecture developed
for data analysis and monitoring in TYPHON polystores. The architecture offers facilities
for the authorisation of data access and update events and for the extraction of analytics of
interest. It builds on scalable and fault-tolerant technologies such as Apache Katka [1] and
Apache Flink [2].

In this final document we present the improvements made to the architecture since the
version presented in the previous deliverable (D5.3) as a result of the feedback received in
the mid-term project review and the continuous feedback by the consortium partners. We
also explain in more detail aspects of the architecture that were only outlined in the
previous deliverable.

More specifically, beyond the presentation of the data event publishing and monitoring
architecture, this deliverable focuses on explaining in detail the event authorisation
mechanism, it discusses security concerns raised during the interim review meeting while
an overview of existing related work is also presented. It also presents a requirements
coverage matrix with a description on how each requirement is supported by the developed
architecture. A new generator of simulated database events is also presented. This new
simulator can generate fast streams of database events and it does not rely on the ingestion
of data stored in CSV files like its previous version. This is essential for evaluating the
scalability of the proposed architecture using controlled experiments. It also helps with
highlighting the difference of our approach in defining analytics based on database events
and not on already persisted data (e.g., in CSV files or databases) as other Business
Intelligence (BI) and analytics tools (e.g., Tableau [3]) are able to do. The experiments
evaluating both the authorisation chain and the analytics facilities demonstrated the linear
scalability of the proposed approach and even distribution of workload across the cluster.

Page vi

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veHon D5.5 Event Publishing and Monitoring Architecture (Final Version)

1. INTRODUCTION

1.1 OVERVIEW

The analytics feature of TYPHON is based on Polystore-triggered events which are
produced every time a TyphonQL command is executed. Beyond the possibility of
producing analytics based on database events, the analytics component also offers a
mechanism of blocking the execution of commands that do not meet user-defined criteria.
In order to achieve both these features the Polystore generates two types of events. The
first, called PreEvent throughout this document, holds information about a query that it is
about to be executed. PreEvents are authorised using configurable application-specific
logic. If the execution of a query is authorised, the TyphonQL engine will be notified and
execute it. Otherwise, the query will be rejected and thus not executed against the polystore.
After the successful execution of the query, a second type of event, called PostEvent, is
generated. PostEvents contain information about which data entities were affected by the
execution of the TyphonQL command and are consumed by the analytics infrastructure to
extract useful insights relevant to the business needs.

As TyphonQL commands such as Delete and Update statements, change values of existing
data (rows, documents, etc.) we introduce a change data capture (CDC) mechanism. Using
this CDC mechanism, analytics developers are able to refer to previous values of the
affected entities increasing the potential scenarios that can be implemented using the
proposed analytics architecture to extract information of interest.

To accommodate the large number of pre/post events that polystore-backed applications
are expected to generate in real-world scenarios, the proposed architecture is implemented
on top of proven big-data-capable frameworks such as Apache Flink [4] and Apache Kafka
[1]. Flink is used for distributing the processing/execution workload of analytics
applications while Kafka stores and dispatches the generated events in a form of a
distributed log. All the necessary infrastructure needed for the Apache Flink and Kafka
components is instantiated automatically with the creation of a TYPHON polystore. In
addition, our proposed architecture includes rich abstractions to allow analytics experts
develop analytics applications with minimal effort.

1.2 DOCUMENT STRUCTURE

The rest of the document is structured as follows. In Section 2 we summarise the events
structure while in Section 3 we present the analytics infrastructure and the authorisation
mechanism, and discuss relevant security concerns. In Section 4 we discuss the deployment
capabilities of the analytics architecture using Docker and Kubernetes. In Section 5 we
present the scalability evaluation of the proposed architecture using a custom-built e-
commerce application event simulator. Finally, in Section 6 we conclude and present
directions for future work.

2. DATA ANALYTICS EVENTS STRUCTURE

This section summarises the data analytics events structure metamodel, which was initially
proposed in D5.2. An evolved version is presented here highlighting the changes since the
last version.

8 July 2020 Version 1.0 Page 1
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

2.1

Update

METAMODEL

preEM

PreEvent PostEvent

1
queryTime: DateTime
user: String | Event
authenticated: boolean -
invertedQuery: String :qdﬁeis"lr;%ring
invertedNeeded: boolean)

slots: ArrayList<Slot>
resultSetNeeded: boolean %

startTime: DateTime

< endTime: DateTime
success: boolean
resultSet: String
invertedResultSet: String

—

| DeserializedPostEvent |

1..* | commands
A4

| DMLCommand

affected: Map<String, List<String>>
clause: String

Select | Delete Insert

i
.

]

returnedEntities| 0..* 0..*|deletedEntities
Y A2

Entity

*

0..%

updatedEntities ~ |UUID: String - insertedEntities
database: String

previousValue: Entity

Figure 1: The Data Event Metamodel

Figure 1 presents the data analytics event structure metamodel. When a TyphonQL query
arrives for execution to the TyphonQL engine a PreEvent object is created. It is of interest
to allow developers to reject commands at the polystore level (as opposed to the application
level). For example, NLP can be used to detect and block queries that are about to create
comments/reviews that include profanity or unwanted URLSs, regardless of the application
that attempts to execute them. The information stored in this PreEvent object will be used
as input to authorisation tasks defined by application developers for approving or rejecting
the execution. If the event is approved, the command will be executed and a PostEvent
will be generated by the TyphonQL engine.

Page 2

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

Both PreEvents and PostEvents have a unique id and store the TyphonQL query that
generated them. The time when the query arrived for execution to the polystore is stored
in the queryTime attribute of PreEvents. A boolean flag, named authenticated, stores the
result of the decision on if the query is approved for execution or rejected. Two more
attributes, namely invertedQuery and invertedNeeded, facilitate the capture data change
(CDC) mechanism supported by the analytics architecture (see Section 3.3). The
resultSetNeeded boolean property declares if the the polystore needs to store the result of
the execution of the commands in the PostEvent object after it is executed. The slots list
acts as an extension mechanism to be utilised by polystore-backed applications. It hosts
key-value pairs of any custom properties that analytics developers need to pass to the
analytics workflow to accommodate their requirements when manipulating the events. A
use of this feature is demonstrated in the scenario presented in the evaluation (Section
5.14)

PostEvent instances will point to their corresponding PreEvent instance (preEvent
reference in the metamodel). PostEvents also hold timestamps of when the execution
started (startTime) and when it ended (endTime). Query time and start time might be
different; a command might have arrived for execution (queryTime) but TyphonQL might
have started its execution (startTime) later due to a delay incurred by the time the
authorisation task(s) for this query need(s). PostEvents store a success flag declaring
whether the execution of the query by the TyphonQL engine was successful or not. Finally,
the result set returned from the execution of the command against the Polystore is stored
in the resultSet attribute. Also, the result set for the invertedQuery used for the CDC
mechanism (see Section 3.3) is stored in the invertedResultSet attribute.

In order to simplify the implementation of analytics, the architecture offers access to
strongly-typed objects. The analytics architecture consumes PostEvent objects and through
an automated deserialisation approach creates such strongly typed objects. These objects,
which are all instances of the DeserialisedPostEvent type referencing the type of the data
manipulation language commands (DMLCommand) of TyphonQL query through the
commands reference. Each DMLCommand' will store a list of the entities that were
affected (e.g., the specific table in a relational database) in the field affected. As some
queries only affect specific “fields” of the data structure (e.g., columns in a relational
database) the affected property is a Map in which the key is the name of the data structure
(e.g., the name of the table) pointing to a list of all the fields (e.g., columns) that were
affected. For example, in the following TyphonQL query “from Product p select p.name
where p.@id =#123” the DMLCommand will be of instance Select, while the affected field
will be the map Product->name.

In addition, each DMLCommand will refer to the data entity that was manipulated (e.g.,
User, Order, etc.). The entities are automatically generated from information taken from
the TyphonML domain model (highlighted in yellow in Figure 1). Depending on the type
of the DMLCommand, the label of this reference changes (e.g., InsertedEntities for Insert
DML commands). The Entity objects hold the Universally Unique Identifier (UUID) of the
affected entity (e.g., the UUID assigned by TyphonQL when a new entity is
created/inserted) and the name of the database that this entity is stored.

For example, for the query “from Product p select p.name where p.@id = #123” the
DeserialisedPostEvent structure shown in Figure 2 is created.

! DMLCommands refer to the data manipulation language TyphonQL queries. The two terms are used interchangeably
throughout this document.

8 July 2020

Version 1.0 Page 3
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

3.1

DMLCommand
| DeserializedPostEvent commands |

Y

| affected: [Product-> {name}]
clause: "where p.@id ==#123"

| Entity
returnedEntities Select
UUID: "#123" <

database: "ProductsDB"
previousValue: null

Product

name: "TV"

Figure 2: The structure of the deserialised post event for the query "from Product p select p.name

where p.@id == #123"

In the case of Update/Delete commands, and in order to keep track of the old values of the
affected entities (part of the CDC mechanism), an attribute called previousValue is used to
host such information. The CDC mechanism is explained in detail in Section 3.4.

DATA EVENT PUBLISHING AND PROCESSING ARCHITECTURE

This section presents an overview of the developed polystore data event publishing and
processing architecture. The high-level architecture was introduced in D5.2/5.3 and it is
summarised here. In this document we focus on the event authorisation part of the
architecture (Section 3.2), the facilities that provide strongly typed objects to the analytics
developers and a change capture mechanism (discussed in Section 3.3); which are new
features developed since D5 .3.

OVERVIEW

The high-level architecture for polystore events analytics in TYPHON is illustrated in
Figure 3.

Page 4

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

TyphonQL
Query

®

Polystore

Gets events publishes
Pre event for approval @ results

publishing /\ /\
O OO Autf%b:'(ie;:tion O OO

PreEvent Authorisation

TyphonQL
Engine

subscribes and gets consults

@ authorisation results @

stores
results

Query
Execution 8 8
Analytics

Databases

/ A
e Post event ’\CDPQE.\;;Q :: @

publishing

Figure 3: The proposed architecture for polystore event-based analytics

Following Figure 3, events undergo ten stages that are distributed among two main
interleaved phases; authorization and analytics. The authorization phase involves
validating if a new incoming query will be allowed to be executed against the polystore,
based on rules defined in the analytics suite. The queries arriving for execution will take
the form of PreEvent objects as these were defined in the previous section. The rules
defined in authorisation tasks can be based either on hardcoded conditions (e.g., value of a
specific field is above a threshold) or on information extracted from the history of previous
events processed through the stream processor. For example, application developers could
specify that login queries should be rejected if there have been more than three unsuccessful
attempts for the same account in the last 60 minutes in the polystore (regardless of the
application that produced them). This ensures that any malicious or unintended activity that
does not follow the polystore’s business rules will be detected and rejected as the last
example highlights. Such a checking mechanism would be possible to be achieved at the
application layer. For example, the checking mechanism could be fired every time the login
button is pressed and check the authorisation logic before submitting the command for
execution to the database. An advantage though of using the authorisation in the form of
validating/rejecting incoming queries is that many applications that connect to the same
Polystore can reuse those authorisation tasks instead of having to implement and maintain
the code in each application.

The second phase is the analytics, which involves the continuous consumption of event
messages for analysis which are generated from the TyphonQL based on DML commands
that were authorised and executed. The tasks developed as part of this stage will consume
messages in the form of PostEvent as these were described before. Below are the stages an
event will go through as it progresses within the proposed architecture.

8 July 2020

Version 1.0 Page 5
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

3.1.1

1) In this stage, a query is passed by a user to the TyphonQL engine for parsing and
execution.

2) TyphonQL will publish a pre-execution event (PreEvent) for the incoming query,
push it to a pre-event queue and wait for the authorization decision of this event.

3) A stream processor dedicated to authorization, will consume messages from the
authorization queue to apply the required authorization checks before generating
an authorization decision of an event.

4) In addition to any rules/checks the authorization stream processor has to apply, it
can also consult previously extracted analytics, if there is any linked information
that could indicate malicious or abnormal activity in relation to the new incoming
event.

5) Following the application of the required authorization checks and the
consultation of any historical data of interest produced by the analytics tasks, the
authorization stream processor publishes its authorization decision to an
authorisation queue.

6) TyphonQL receives the authorization decision it was waiting for in step 2.

7) Based on the outcome of the authorization decision generated in step 6,
TyphonQL will execute the query received at step 1 or reject it and produce an
appropriate exception to its caller.

8) In case the query is executed by TyphonQL, a post-execution event (PostEvent)
will be generated and pushed to the analytics queue.

9) The analytics stream processor will consume the (post) event, deserialise it to a
DeserialisedPostEvent object to which the relevant analytics could be applied.

10) The results of the analytics can be stored/published using different mechanisms
(e.g., a database, a filesystem, a web-service).

A detailed discussion on the implementation of the analytics architecture can be found in
D5 .3. In the following section we focus on the event authorisation infrastructure’s concepts
and implementation which has not been described in previous deliverables.

The main subsystems involved in the proposed architecture are:

e Messaging queues/logs (coloured in green in Figure 3): these operate as the
communication middleware between different subsystems to manage the
messages of events generated at each stage of the event flow to be consumed by
the relevant subscriber. These logs are implemented using Apache Kafka [1].

e Stream processors (coloured in yellow in Figure 3): such processors are
responsible for analysing executed queries and extracting information of interest.
Our implementation builds on Apache Flink [4] for the development of event
processors.

State-of-the-art

Apache Kafka is an open-source and horizontally scalable, high-throughput, durable, fault-
tolerant publish/subscribe messaging queue originally developed at LinkedIn [5]. Apache
Kafka is used by many major technology firms such as Uber, Spotify, Expedia and others.
In Kafka, one queue can be split into multiple fopics to separate messages that belong to
different categories/feeds. Compared to RabbitMQ [6] and ActiveMQ [7], Kafka offers a
higher throughput per topic especially when the message routing logic is simple as in our
architecture [8]. It also offers long term storage meaning that the same event can be

Page 6

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

consumed multiple times (replay of messages), acting more like a message log than a
routing queue, making it ideal for offline analytics [8].

Apache Flink is a distributed processing engine that supports both bounded (batch) and
unbounded (stream) data flows. Flink is designed to run streaming applications at any scale
[9]. Application developed in Flink can be parallelized into any number of tasks which can
be executed in a distributable and concurrent manner offering in practice unlimited
scalability. Compared with Apache Spark [10], where streaming environment is based on
micro-batching (i.e., incoming events are collected in small batches and sent for processing
together), Flink offers native streaming capabilities, i.e., events are sent for processing
individually, the moment they arrive. This leads to minimal latency, which is desirable in
cases such as the authorisation one described in this document, where an event should be
processed as soon as possible to avoid delaying the execution of other commands.
However, it comes at the cost of harder implementation of fault tolerance as checkpoints
for which events have arrived for processing should be kept individually for each event and
not for a whole micro-batch. Flink performs very similarly to Apache Storm [11] in terms
of execution time, however the latter (Storm) lacks important features like windowing,
event time processing and aggregation. Except for the aforementioned advantages of Flink
compared to its competitors, Flink is becoming a widely adopted parallel processing
framework as it is being used in big technology firms such as Uber, Lyft, Alibaba, Yelp
and others [2] which use it to process trillions of events every day [12].

Different systems [13] have been proposed and developed to capture database related evens
to mostly allow replication or migration of databases. Connectors (e.g., KafkaConnect
[14]) are registered to databases’ specific mechanisms to extract already stored data and
identify changes. These are published in message queues or logs (e.g., Apache Kafka).
Sinks connected to these logs are then executing (replaying) the changes to store the data
in another database system. Approaches like Maxwell’s Deamon [15] and Oracle
GoldenGate [16] monitor the database’s log (i.e., binlog) to extract events but these are
restricted to use only on relational databases. Debezium [17] offers an event capturing
mechanism that supports both relational and non-relational databases. It builds atop
KafkaConnect however, for some databases of interest (e.g., MongoDB, Cassandra), only
capture changing commands (i.e., insert, update, delete) and not select queries. Also,
Debezium supports a limited number of databases while it has to be deployed in each
machine hosting a database (for example it has to be deployed separately in each node in a
Cassandra cluster). Another overhead is that Debezium is not able to capture events in
standalone MongoDB servers as these do not store logs of changes (i.e., oplogs). Thus, it
requires deployment of MongoDB databases as MongoDB replica sets, which act as nodes
sharing the same data two or more times. The Confluent platform [18] is a real-time event
streaming application that uses Apache Kafka for storing events. It supports over 100
source and sink connectors to databases and filesystems [19] each of which support
different level of granularity of the events that can be captured.

The aforementioned approaches support either a limited number/types of databases or
limited amount of information from the databases supported. In addition, some of them
require duplication of data or storing of unrelated events (e.g., the SQL binlog stores,
except the DML commands, DDL commands, too). In addition, all of the approaches
require the use (and development in case it is not available) of a custom connector for every
database and database type in the system. Except the fact that such connectors might not
be possible to be implemented of the database offers a related mechanism that can be
exploited for that use, the different connectors can acquire different levels of information

8 July 2020

Version 1.0 Page 7
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

3.2

3.2.1

from each database type based on what information the database can offer. In addition,
these connectors act separately in each database. If a single TyphonQL command affects
more than one database, a common scenario in polystores, then the matching of these
events coming from different databases but triggered from the same command is a difficult
- if possible at all - task. Finally, to the best of our knowledge, none of the approaches offer
a pre-execution event capturing and authorisation mechanism.

The latter can be achieved with the use of database triggers as those presented in D5.1.
However, not all databases allow the execution of custom logic before the actual execution
of the commands thus such a feature can only be used with some of the databases in the
polystore. Most of the database systems allow the implementation of custom logic based
on event triggers after the actual execution of the command. However, this comes with the
drawback of having to define specific triggers for each type of command and
table/document affected separately which does not allow the creation of a single event that
contains all the information needed for the extraction of analytics if a single polystore
command affects multiple tables/documents within the same database and across the
different databases.

To conclude, our approach offers both a before (PRE) and after (POST) execution event
capturing mechanism. Authorisation and analytics tasks can be developed having access to
the data and databases the command affected, no matter if the latter had impact on multiple
entities and different types of databases as it is based on the single database manipulation
syntax (that of TyphonQL). Also, the latter allows future support of event capturing for any
new database added to the polystore that is supported by polystore querying language
without requiring developers to implement specific database event capturing/triggering
mechanism which will require extra effort and is only possible if the newly added database
offers a mechanism to offer the information of interest. Finally, in the case of migration of
data from one type of database to another, the authorisation/analytics tasks do not need to
be redeveloped to use the database specific event triggering syntax.

EVENT AUTHORISATION

Overview

The event authorisation architecture is based on the concept of authorisation tasks. Each
authorisation task contains the business logic that defines if a query should be executed or
not against the polystore. However, it is important to note that not all authorisation tasks
are necessarily applicable to all queries arriving for execution. For example, in an
ecommerce scenario, an authorisation task that contains the logic for approving/rejecting
the registration of new users is only applicable to “insert” queries on the “user” entity. As
a result, application developers need to provide, except of the approval/rejection logic, the
logic that checks if the authorisation task is applicable to the incoming PreEvent (created
for the query).

In the proposed authorisation architecture, all the tasks are part of an authorisation chain.
A PreEvent arriving for authorisation, visits authorisation tasks one after the other, unless
a previously visited task has already rejected the execution of that event. If a task has
approved the execution of the query or is not responsible for checking the query it passes
the PreEvent to the next task in the chain. A PreEvent is executed if it has been approved
(orignored) by all the tasks in the chain. In the following section we present the architecture
and the implementation of the authorisation chain and tasks in detail.

Page 8

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

3.2.2 Implementation

Developers can provide the aforementioned logic by implementing an abstract class
(namely GenericAuthorisationTask) which is part of the analytics infrastructure. More
specifically, they need to implement two methods for each authorisation task: 1) the
checkCondition(Event event) and ii) shouldIReject(Event event).

The first method (i.e., checkCondition(...)), checks if the task is responsible for approving
or rejecting a query. It returns a Boolean value which flags the result of the evaluation (i.e.,
true means that the task is responsible, false means that it is not). The second method (i.e.,
shouldlIReject(...)), includes the logic the defines if a query should be approved or rejected.
The shouldIReject method is called if and only if the checkCondition method of the task
evaluated to true. The shouldIReject method returns a Boolean value stating whether the
query should be rejected or not (true means that it should be rejected, false otherwise).
Figure 4 shows the flow of an approved event through an example authorisation chain.
PRE

@

‘Authorisation Task 1
©, tue (D

CheckCondition shouldIReject
‘ false
‘Authorisation Task 2

false

CheckCondition [| shouldIReject

\

@

AUTH
Figure 4: An example of an authorised event

In Figure 4, PreEvent “1” arrives for authorisation in the first authorisation task and it is
checked against the “checkCondition” method of the task. The outcome is “true” meaning
that this authorisation task contains logic that it is applicable to queries such the one
included in event 1. Thus, the event is passed to the “shouldIReject” method of the task.
For the sake of this example, task 1 does not reject event 1 thus it is passed to the
“checkCondition” method of the next task in the chain (i.e., authorisation task 2). The
“checkCondition” of this task evaluates to false which means that this specific task is not
applicable to approve or reject such queries included in the event. As there is not task left
in the authorisation chain, the event is published to the AUTH queue having its authorised
flag set to “true” as none of the tasks rejected it.

8 July 2020

Version 1.0 Page 9
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

3.23

PRE

@

‘ Authorisation Task 1

@ true @ true

CheckCondition shouldIReject

‘ Authorisation Task 2 @

CheckCondition shouldIReject

@

AUTH
Figure 5: An example of a rejected event

Figure 5 presents the flow of a rejected event through the authorisation queue. Event “2”
arrives from the PRE queue and is passed to the “checkCondition” method of authorisation
task 1. The method evaluates to “true”, thus the event is passed to the “shouldIReject”
method of the task. In this example let’s assume that task 1 rejects the execution of the
query included in the event 2 based on the logic defined the method. As the event has
already been rejected, there is no reason to be evaluated from other tasks, thus it is
automatically pushed to the AUTH queue having its authorised flag set to “false”.

Orchestrator

The authorisation chain is based on the concept of Side Outputs available in Flink. Each
stream of data in Flink can be transformed to another stream in which the data is grouped
using tags based on some logic defined in the transformation operator. Figure 6 shows an
example of using Flink’s side outputs.

Tag "Greens"

S
OOOODQ || frpamer ® 00

Tag "Blues”

®

Output Stream

Input Stream

Figure 6: Example of using Flink's Side Outputs

The data in a Flink stream pass through a transformation operator (e.g., a Process operator)
that separates them based on an attribute (i.e., color). The data is pushed in another stream
which has three groups, tagged as “Greens”, “Reds” and “Blues”. Using Flink’s
functionality, one can apply any operator on one or more of the grouped items of the stream.

The analytics architecture, by exploiting the side outputs functionality of Flink,
automatically tags PreEvents into specific groups that facilitate the orchestration of the
flow of events within the authorisation chain. More specifically, all rejected events, no

Page 10

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

matter which task rejected them, end up in a group tagged “Rejected”. The events that were
either approved or not checked (because of the “checkCondition” method returning “false”)
by a task are placed under the group which is tagged by the name of the Task. Those are
given as input to the next task in the chain where the process is repeated.

PRE

4 Tag "T1"

Authorisation Approved or
Rejected | Task 1 ("T1") Not Applicable

Y

! ¢ o
| Taqg "Reiected" _Rejected |Authorisation Approved or
9 " A Task 2 ("T2" Not Applicable ~

A |

v Tag "T3"
Rejected |Authorisation Approved or
Task 3 ("T3") Not Applicable

—J00-0]

AUTH

Figure 7: Example of events flow in the authorisation task chain using side outputs

Y

Figure 7 presents an example where three authorisation tasks exist in the authorisation
chain. The first task in the chain “T1” consumes directly from the PRE queue. If the task
is not responsible for checking such events or if it approves it, it passes it to the output
stream to the group tagged as “T1”. If the event is checked and rejected, it is pushed to the
group “Rejected”. Task “T2” consumes events coming from the group “T1” which is the
task preceding in the chain. In the same manner as before, if the event is approved or not
applicable, it is passed to a group tagged “T2”. In contrast, if it is rejected, it is passed to
the “Rejected” group. The same process is applied for task “T3” which consumes from task
“T2” and publishes the rejected events to the same “Rejected” group. As “T3” is the last
task in the chain, it publishes the approved events directly to the AUTH queue. These are
all the events that were approved for execution by all the tasks in the queue either because
the tasks were not responsible for checking them or because they passed successfully the
authorisation logic of the tasks. All the tasks collected in the “Rejected” group are
published to the AUTH queue, but they have their authorised flag set to false.

8 July 2020

Version 1.0 Page 11
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

// The PRE queue
DataStream<Event> dataStream = StreamManager.initializeSource(PRE,
PreEvent.class);

// The “Rejected” tag
OutputTag<Event> rejectedOutputTag = new QutputTag<Event>("Rejected") {};

// Instances of the Authorisation Tasks implemented by the user
AuthoristionTaskl T1 = new AuthoristionTaskl();
AuthoristionTask2 T2 = new AuthoristionTask2();
AuthoristionTask3 T3 = new AuthoristionTask3();

// The tags for the approved/not applicable group for each task
OutputTag<Event> T1OutputTag = new QutputTag<Event>(“T1"”) {};
OutputTag<Event> T20utputTag = new QutputTag<Event>(“T2") {};
OutputTag<Event> T30utputTag = new QutputTag<Event>(“T3"”) {};

// The run method is provided by the GenericAuthorisationTask
SingleOutputStreamOperator<Event> splitStreaml = T1.run(dataStream, T1);
SingleOutputStreamOperator<Event> splitStream2=
T2.run(splitStreaml.getSideOutput(tasklOutputTag), T2);
SingleOutputStreamOperator<Event> splitStream3=
T3.run(splitStream2.getSideOutput(task20utputTag), T3);

// The final group (“T3”) is collected and pushed to the AUTH queue
DataStream<Event> finalApprovedStream =
splitStream3.getSideOutput(task30utputTag);
StreamManager.initializeSink(AUTH, finalApprovedStream);

// The rejected events are collected and pushed to the AUTH queue
DataStream<Event> finalRejectedStream =
splitStreaml.getSideOutput(rejectedOutputTag)
.union(splitStream2.getSideOutput(rejectedOutputTag)
.union(splitStream3.getSideOutput(rejectedOutputTag));
StreamManager.initializeSink(AUTH,finalRejectedStream);

Listing 1: The java orchestrator for the authorisation tasks execution

A part of the orchestrator Java application for the above example is shown in Listing 1.
The run(...) method that is implemented in the GenericAuthorisationTask class, is
responsible for calling the transformation method (i.e., a Flink “process” operator) for re-
directing the events to the appropriate groups based on the results of each task’s
“checkCondition” and “shouldIReject” methods.

A code generator was developed to produce the orchestrator Java class shown in Listing 1
using a model-to-text (M2T) transformation. The input to the M2T transformation is a
model conforming to the metamodel shown in Figure 8.

1..* | tasks

AuthTask

0..1

name: String " next

Figure 8: The authorisation chain metamodel

Page 12

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veron D5.5 Event Publishing and Monitoring Architecture (Final Version)

Each authorisation chain (i.e., AuthChain) consists of a number authorisation tasks (i.e.,
AuthTask). Each authorisation task has a name which is the name of the implementation
class and a reference next pointing to the exactly one? task in the chain. A part of the M2T
transformation written in the Epsilon Generation Language [20] is shown in Listing 2. The
generator iterates through all the tasks and creates their class instances and the equivalent
output tags (lines 1-7). Then in lines 10-27, streams that include the “approved” elements
for each task and callers to the run(...) method of each task are created. In line 29, the
stream of the last task in the task (which includes all the approved element) is defined.
Finally, in lines 33-43, the stream that includes all the rejected elements is created by
combining (through the union operator) the rejected tasks from each task.

1 [% for (task in chain.tasks) { %]

2 [%s=task.name%] [%=task.name.ftlc()%] = new [%=task.name%]();

3 OutputTag<Event> [%=task.name.ftlc()%]0utputTag = new OutputTag<Event>
4 ([%=task.name.ftlc()%].getLabel()) {};

5

6 [%}

7 %l

8

9 [%

10 var firstTask = AuthTask.all().selectOne(t|not(AuthTask.all().next.contains(t)));
11 var currentTask = firstTask;
12 var previousTask = null;

13 %]

14 SingleOutputStreamOperator<Event> [%=currentTask.name.ftlc()%]SplitStream =

15 [%=currentTask.name.ftlc()%].run(dataStream, [%=currentTask.name.ftlc()%]);
16

17 [%

18 while (not (currentTask.next == null)) {

19 previousTask = currentTask;

20 currentTask = currentTask.next; %]

21 SingleOutputStreamOperator<Event> [%=currentTask.name.ftlc()%]SplitStream =
22 [%=currentTask.name. ftlc()%]. run([%=previousTask.name.ftlc()%]SplitStream
23 .getSideOutput([%=previousTask.name.ftlc()%]0utputTag), [%=currentTask.name.ftlc()%]);
24

25 [%

26}

27 %]

28

29 DataStream<Event> finalStream = [%=currentTask.name.ftlc()%]SplitStream

30 .getSideOutput([%=currentTask.name. ftlc()%]0utputTag);

31

32 %

33 var finalRejectedStream = "";

34 for (task in chain.tasks) {

35 finalRejectedStream = finalRejectedStream + task.name.ftlc() + "“SplitStream
36 .getSideOutput(rejectedOutputTag)";

37 if (hasMore) {

38 finalRejectedStream = finalRejectedStream + ".union(";

39 } else {

40 finalRejectedStream = finalRejectedStream + ");";

41

42}

43 %]

Listing 2: The orchestrator M2T transformation

We opted for the use of a model to define the authorisation chain, instead of other means
(e.g., a file that lists the names of the tasks) as this can act as an extensibility mechanism
in the future. Polystore developers might update the metamodel to include in the chain/tasks
metadata of interest. For example, a field that denotes the priority level of each task might
be useful to re-arrange the chain taking into account historic execution time for each,
rejection rate and priorities.

2 As the last task does not have a following task the multiplicity of the reference is 0..1

8 July 2020 Version 1.0 Page 13
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

3.24

3.25

To summarise the authorisation chain creation and configuration, developers need to

1) Create new task in the model, positioning it to the correct place in the chain using the
next reference.

2) Create a Java class for the authentication task by implementing the provided interface

3) Run the generator to produce the runner class

4) Redeploy the polystore to include the new task created

Security Concerns

There are two main types of security issues to consider with regards to the Analytics work
package: ones related to the use of internal communication channels (Kafka) and ones
related to accessing the Typhon polystore.

Regarding data passing through the internal communication channels of the analytics
engine, the security aspects can be managed by the channel itself (Katka). Kafka offers
both authentication and data encryption mechanisms that can be leveraged to disallow any
access to the internal queues to anyone other than the analytics engine, should this be
required. Furthermore, the system can be configured to only allow access to its channels
through the internal network itself, should the analytics engine reside alongside the Kafka
brokers. In this case there is no external access possible, further limiting any avenues of
attack, as access to the system itself would be one of the few remaining ways to gain access
to the Kafka channels.

With respect to the latter, logic both in the authentication and analytics code is able to
access all data passing through the polystore. It may be the case that an organisation wants
to separate their data into levels and allow certain users access only to certain elements.
Since polystores does not support user-based permissions or a similar data separation
policy at this stage as this was beyond the scope of the TYPHON project, the analytics
infrastructure cannot enforce more fine-grained user-level access control.

Related Work

Database and big data security and authentication is a topic that has been investigated for
some time, largely through the use of various security or database audit frameworks.

Apache Metron® [21] is a security analytics framework that works with big-data sources
such as Apache Kafka. It contains tools such as a profiler, that can read from such sources
and set up a profile for applicable elements (similar to the checkCondition(Event event)
method of our tool). This profile can then be used to analyse the incoming data to create
meaningful metrics, for example by using other Metron packages such as its statistical
package. This approach is similar to the authentication component of our architecture and
gives us confidence that our approach for handling polystore authentication is grounded in
work that is already tried and tested.

Database audit frameworks such as ApexSQL audit and compliance tools* or MySQL
Enterprise Audit®> allow for the monitoring of activity on relational databases and create
audit trails that can be used to pinpoint security or malicious use of the system. Such
systems often use policies to define what should be monitored, offering a higher level of

3 https://metron.apache.org/

4 https://www.apexsqgl.com/sql-tools-audit.aspx

5 https://www.mysgl.com/products/enterprise/audit.html

Page 14

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

abstraction for creating such rules, as well as more fine-grained filtering to lower the
overhead and persistence sizes of such logs. Compared to our architecture, these
technologies are more mature but are limited to auditing a single type of database each.
Building upon this knowledge, our authentication system offers the fine-grained approach
of monitoring specific classes of polystore queries.

33 DESERIALISATION
As described in Section 2.1, the analytics engine offers access to strongly-typed Java
objects for consumption by the code running the analytics logic. This section presents how
these objects are created.
When a PostEvent is consumed from the Post queue by the analytics engine, to be
processed by the Flink code that has been written by the analytics experts, is contains the
following data structures of interest:

e resultSet This is the JSON string returned from TyphonQL that holds the results of
the execution of the query from which this PostEvent has been created, in their
native format.

e invertedResultSet This is a JSON string holding the results obtained for any
additional queries that were created by the analytics engine in order to obtain further
data about the query, that was unavailable through the results of the query itself.
This is done through the concept of inverted selects, which will be discussed in
detail in the next Section 3.4. With regard to the creation of strongly-typed Java
objects, this string can be considered of the same structure as the one in the
resultSet.

The first job of the analytics component that consumes these PostEvents is hence to
deserialise these JSON strings into Java objects representing the types found in the
TyphonML model the data experts had defined for the polystore. Below is a summary of
the steps that are performed:

e A model-to-text transformation is executed, creating the appropriate Java classes
from the TyphonML model, all of which extend the common Entity superclass.

e A DeserialisedPostEvent is created, extending the PostEvent with a list of (DML)
commands; each of these commands will either be an update, a select, a delete or
an insert.

e These commands will each contain the actual clause of the command in question,
a map containing the types and properties of the TyphonML elements affected by
this command, as well as the list of actual Entities that were affected. The actual
Java types of these entities will be one of the concrete types created by the model-
to-text transformation performed at the beginning of this process.

In order to parse the query and to instantiate the correct concrete Java classes, the engine
uses the TyphonQL query parser to convert it to an abstract syntax tree (AST). Using this
AST the engine then obtains the name of the affected entity and using reflection, it creates
the relevant instance and populates any of the fields that have been affected by this DML
command:

e [Insert: entities with all fields that were given a value are included

e Delete: entities deleted, including their values before deletion are included

e Select: returned entities, including values requested by the command are included

e Update: updated entities, including the previous and current values of any updated
field are included (through the previousValue object)

8 July 2020 Version 1.0 Page 15

Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

As these results can be arbitrarily large, the analytics expert is able to disable retrieval of
these entities, if they know they do not need them for their analytics. This is done by setting
the flag resultSetNeeded to False, for PreEvents that the expert does not wish this data to
be captured for, as part of their authentication chain logic.

3.3.1 Handling of References to other Entities

Entities can have values that are other Entities; for example a User of an e-commence
system can have an Address. The way this is handled is through the creation of proxies.
Whenever a field has a value that is another Entity, a proxy instance of this Java class is
created, with the isProxy field set to true and with only its identifier value set. As such, if
the analytics developer requires to further navigate to this Entity as part of their analysis,
they can use its identifier to query the polystore and obtain any further data required. This
approach is chosen as it reflects what is returned by the polystore in such cases, and since
resolving these proxies by the engine would have to perform the exact same query to the
polystore regardless.

3.4 CHANGE CAPTURE

One of the limitations when offering analytics originating from DML commands is that
only the data returned by the command itself is normally available. This section discusses
how the analytics engine tackles the issue of change capture when insufficient data is
returned by the polystore. Since insert statements already include all of the data required
to create the Entities required, and since select statements do not alter any data, no
additional changes are needed when those commands are executed.

3.4.1 Related Work

We have considered three alternatives for manage change capture: additional database
queries, database triggers [22] and use of database logs (such as those provided by many
popular databases like MySQL®)

The simplest way to manage this issue is to create the necessary queries to the database
whenever this data is needed, and before it is manipulated. Unless this is automated though,
it will likely be a very complex process for analytics developers to perform themselves, as
they would likely have to retrieve this data before their actual query is executed (and hence
may have already altered the data). On the other hand, automating the process will incur
additional overhead as data that may never be used will end up being collected alongside
useful data, unless a very fine-grained customisation is provided on the user-level (such as
being able to pick exactly what Entities and what Fields they want previous values for).

Another way to obtain this data is using database triggers. This approach is similar to
querying the database and has the added benefit of being integrated with many database
systems. On the other hand, the fact that the polystore aims at supporting a wide range of
databases may be a limiting factor, as some such systems may either not offer or offer a
substantially different way of exposing such triggers as presented in D5.1.

% https://dev.mysgl.com/doc/refman/5.7/en/server-logs.html

Page 16 Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

The final way to obtain this data is using database logs. Systems such as Debezium [17] or
the Qlik Data Integration Platform’ read the database logs of supported databases and
expose this data to be consumed through appropriate channels such as Kafka. The most
significant limitation of such systems is that different database technologies offer very
different logging to one another. For example, SQL databases often log enough data so that
the previous values are available, but many NoSQL ones will either not log at all or will
log much more limited data, hence not providing the system with enough data to re-create
previous values. Finally, it is worth noting that commercial tools like HVR’s CDC? or
Oracle Database CDC® offer both trigger-based (synchronous) and log-based
(asynchronous) change management.

We decided to offer an automated form of the first approach, to allow for customisation,
generalisation and extensibility through code generation techniques. This approach can be
extended to support any database system regardless of whether they offer triggers or logs
and it can be customised to allow for more limited data to be captured based on user
requirements.

3.4.2 Delete and Update Statements

When a delete TyphonQL command is issued and executed, the results only include the
identifiers of the element(s) that have been deleted. Since the elements are now deleted,
there is no way to query the database in order to retrieve the values they had before their
deletion. As those values can be of use to the analytics developers, an inverted select
(described below) is created and executed before the delete itself, capturing the values of
those Entities just before deletion.

Similarly, when an update command is issued and executed, the updated values are
available through the command itself but since they are then updated in the database, there
is no way to query the database in order to retrieve these values before their change. As
those previous values can be of use to the analytics experts, an inverted select (described
below) is created and executed before the update itself, similarly to how this is done for
deletion statements.

It is worth noting that since the polystore does not support the concept of cross-database
atomic transactions, there is no way for us to guarantee temporal ordering. For example if
the user issues a command to delete cheap products from the database (for example all
products with a price less than 10) but between the retrieving of those products (through
the inverted select) and the actual delete query being executed, one of those products has
their price updated (in this case to greater than 10), then our previous values are not
accurate. This is an inherent limitation of unifying different database instances and is
documented in the user guides, so that the analytics experts are aware of this and can either
chose to use this functionality knowing its limitations, or they can chose to turn it off and
rely on the queries themselves for the analytics.

3.4.3 Inverted Selects

When more information is needed for providing a complete Entity by the analytics engine,
and such information cannot be obtained during the execution of the analytics themselves,
the concept of inverted selects is used. This concept uses the where clause in a delete

7 https://www.qglik.com/us/data-streaming/data-streaming-cdc

8 https://www.hvr-software.com/product/change-data-capture/

% https://docs.oracle.com/cd/B28359 01/server.111/b28313/cdc.htm

8 July 2020

Version 1.0 Page 17
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

statement and the where and set clauses of an update statement and creates a select
statement with those clauses instead. For example:

e delete User u where u.@id == #1
o creates: from User u select u.@id, u.name, u.address, u.comments,
u.paymentDetails, u.orders, u.reviews, u.basket
e update Address a where a.@id == #2 set { street: "street 18" }
o creates: from Address a select a.@id, a.street

These select statements are then executed and their results are stored in the
invertedResultSet of the PostEvent elements created by the polystore. As discussed in
Section 3.3, the analytics developer will now have access to both the results from the
command as well as any additional results from any inverted selects that were created and
executed, for their analytics program. It is worth noting that referenced elements (for
example the reviews a user has created) are retrieved by proxy (an element only containing
the identifier in the database) in order to limit retrieving a potentially deeply nested
structure. Furthermore, similarly to disabling the result set, the analytics developer is able
to disabling retrieving the inverted result set as well, through the flag invertedNeeded in
the PreEvent, if they do not need it in their analytics programs.

3.5 REQUIREMENTS COVERAGE
In this section we present the requirements that the proposed architecture covers as those
defined by the industrial partners. Table 1 summarises the Use Case requirements related
to the data analytics & monitoring architecture along with their overall priority as it is
presented in D1.1.
Table 1: Data analysis and monitoring use case requirements table
ID | Requirement Overall Priority Coverage
70 Thg _polystore shall_offer a mechanlsm_ for trigger SHALL Supported
definition and execution on update operations
71 Thg _p_olystore shall_oﬁ’er a mechanism for _tngger SHALL Supported
definition and execution on data access operations
72 The_ polystore shall offer a mech.anllsm to defl_ne and SHALL Supported
retrieve clusters of objects with similar properties
73 | The polystore shall offer a mechanism to enable the
identification of changes in stored trend displays SR Supported
74 T_he polystore shall offer a mechanism to hold SHALL Supported
historical searches
75 | The polystore may offer a mechanism to plugin
processing components that transform data when its | SHOULD Supported
ingested
76 | The polystore may offer a mechanism to plugin Not
processing components that transform data when its | SHOULD
) Supported
retrieved
e Requirements 70 & 71: Both requirements are fully supported by the proposed
architecture. This can be achieved either as an authorisation task if the trigger needs
to be called before the execution of the query or as an analytics task if needs to be
triggered afterwards.
e Requirement 72: This requirement is fully covered by the capabilities of the
proposed architecture to define analytics tasks after the execution of each query.
This is also facilitated by Apache Flink’s operators for grouping items sharing same
Page 18 Version 1.0 8 July 2020

Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

properties, Flink’s Complex Event Processing (CEP) libraries to group items based
on patterns and more generic operators (e.g., map, process, apply, etc.) to define (or
call) custom clustering algorithms.

Requirement 73: Trends can be extracted by analysing relevant queries and
monitored over time through Flink-based analytics components.

Requirement 74: As all queries go through the analytics architecture, historical
queries (searches) can be saved and later retrieved by an application if that is
desirable.

Requirement 75: This requirement can be achieved by using exploiting the
authorisation task functionality. As these tasks are triggered before thee execution
of a command, users are able to amend the data manipulation command and make
the necessary transformations.

Requirement 76: This requirement is not supported as there is not a mechanism
available to amend the retrieved data returned by the Polystore. One can only
interfere to amend the retrieval query but this will only impact which values will be
retrieved but not the values themselves.

Table summarises the Component requirements for the data analytics & monitoring
architecture as these described in section 10.4 of D.1.1.

Table 2: Data analysis and monitoring component requirements table

ID | Requirement Overall Priority Coverage
44 | Distributed execution of real time analytics and
monitoring facilities shall be supported. SR Supported
45 | Execution of analytics and monitoring facilities shall
be triggered by data access and update requests and | SHALL Supported
events generated by TyphonQL.
46 | Fault tolerant execution of the analytics and
monitoring facilities shall be supported. AL Supported
47 | Publishing and subscribing to data access requests
and events to a distributed message queue through a | SHALL Supported
distributed messaging channel shall be enabled.
48 | Publishing and subscribing to data update events and SHALL Supported
events shall be enabled. PP
49 | Criteria based subscription to data events shall be SHALL Supported
enabled.
50 | The development of text mining pipelines for data
events shall be simplified. SR Supported
51 | Facilities for batching data events (e.g. per session) SHOULD Partially
should be provided. Supported
52 | Analytics facilities to prevent the fulfilment of data
access/update requests’® may be enabled. LU Supported

Requirement 44: The requirement is fulfilled by allowing developers to define
analytics and monitoring tasks using method wrappers provided that can be
executed over Apache Flink clusters.

Requirement 45 & 47, 48: Appropriate events are generated and published
automatically in a distributed message log (i.e., Apache Kafka [1]). The analytics

10 Motivating scenario: In an e-commerce system, users may not be allowed to change their address more than three
times within 12 hours (for fraud prevention reasons). This restriction can be implemented in a modular way in the
context of a dedicated monitoring component, which can cause the API’s e.g. User.setAddress() method to fail with an
appropriate exception if this restriction is about to be violated.

8 July 2020

Version 1.0 Page 19
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

4.1

tasks defined are automatically subscribed to the appropriate topic of the Katka log
and are triggered every time an access/update request is submitted.

e Requirement 46: This is achieved by implementing the architecture atop fault-
tolerant infrastructure such as Apache Kafka and Apache Flink.

e Requirement 49: Analytics developers can subscribe and consume events stored
in the POST Kafka queues and filter those fulfilling their criteria in the appropriate
Flink “filter” operators.

e Requirement 50: Text mining pipelines are implemented atop Apach Flink and
thus are compatible to run on the established Apache Flink infrastructure.

e Requirement 51: This can be achieved by exploiting the “slots™ attribute in the
PreEvent objects for adding information related to batching of data events (e.g., a
session id).

e Requirement 52: This is supported through the authorisation tasks.

Finally, following are the cross-component requirements related to WPS5.

ID | Requirement Overall Priority Coverage

53 | The TyphonQL execution engine shall publish data
access and update requests and events to the

analytics and monitoring framework’s distributed S Supported
messaging channel [WP4].

54 | The generated polystore APl shall publish data
access and update requests and events to the SHALL Supported

analytics and monitoring framework’s distributed
messaging channel [WP2].

55 | The TyphonQL execution engine may support
rejection of data access and update requests based |SHALL Supported
on feedback from analytics facilities [WP4].

56 | The generated polystore APl may support rejection of
data access and update requests based on feedback | SHALL Supported
from analytics facilities [WP2].

DEPLOYMENT

In this section we discuss the deployment capabilities of the analytics architecture. This
builds atop the Docker deployment presented in D5.3; a summary of it is presented here as
a reminder to the reader and a few changes since the last version are also discussed. In
Section 4.2 we discuss the newly-introduced Kubernetes deployment in detail. We suggest
the use of the Docker deployment for development and testing of analytics and
authorisation tasks, while the Kubernetes one for deployment in a distributed environment.

DOCKER

In this section, we present how the proposed analytics architecture is packaged and
deployed using Docker’s [23] containerisation technology. Apache Kafka messaging
infrastructure requires Zookeeper [24] as an orchestrator, thus one should first initialise a
container that starts up Zookeeper. Docker promotes the re-use of images that were
developed to perform specific tasks. Thus, we instantiate all the necessary infrastructure
for Kafka [1] and Zookeeper [24] using an already-developed image available on Docker
Hub [25]. The wurstmeister/kafka docker image!!, used in our work, allows the deployment

1 https://hub.docker.com/r/wurstmeister/kafka

Page 20

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

of Kafka and Zookeper in a parameterized way using a docker-compose file. In addition,
we merged the official Docker image of Apache Flink!? into the existing docker-compose
configuration script. The relevant parts of the docker-compose file are shown in Listing 3.

In lines 1-5, Zookeeper is configured to listen to port 2181. This is the port where Kafka
will access to communicate and exchange all the necessary information with Zookeeper.
In lines 7-22, the Kafka container is configured. What has changed since the deployment
presented in D5.3 is the capability of Kafka queues to be accessible from outside the
Docker deployment using this new configuration. More specifically, previously, one
should deploy the analytics scenarios (both authorisation and analytics tasks) inside a new
Docker container that has Java installed inside the same Docker network with the rest of
the analytics infrastructure (i.e., Zookeeper and Kafka containers). Lines 24-33 configure
a Flink job manager with published port 8081 (i.e. web browser based Flink user interface).
Similarly, lines 34-43 configure a Flink task manager. In this new version the analytics
infrastructure is now accessible from outside Docker by using the advertised listeners
feature of Kafka (see line 13).

Analytics experts need to be able to test the scenarios they develop by running them, for
example, from their local IDE instead of having them exported into runnable JARs that
then need to be deployed in a new Docker container. In other words, new analytics
scenarios can be tested by simply running their main method in the IDE, saving up time
especially during debugging.

In the previous deliverable (i.e., D5.3) we focused on how analytics experts can deploy
their scenarios using docker images. In Appendix A, we provide a detailed guide on how
one can write and run analytics scenarios outside Docker using the new configuration
described above.

Finally, in lines 44-45 we create a start a default authorisation task. In order for TyphonQL
commands to be executed, they first need to be approved by the one or more authorisation
tasks. However, it might be the case that users of the Polystore do not wish to use the
authorisation mechanism. This is either because it is not part of their requirements at the
moment or because they plan to implement the authorisation tasks in the future. Thus, an
image that contains a default authorisation task that authorises the execution of all the
TyphonQL queries is deployed when the Polystore starts. Users wishing to define custom
authorisation tasks, need to stop this container and instead deploy their own custom
authorisation tasks chain (see Section 3.2).

12 https://hub.docker.com/ /flink

8 July 2020

Version 1.0 Page 21
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

4.2

4.2.1

zookeeper:
image: wurstmeister/zookeeper
ports:
- target:
published:
kafka:
environment:
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_ADVERTISED_HOST_NAME: localhost
KAFKA_LISTENERS: QUTSIDE://:29092, INSIDE://:9092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INSIDE:PLAINTEXT, OUTSIDE:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INSIDE
KAFKA_ADVERTISED_LISTENERS: OUTSIDE://localhost:29092, INSIDE://:9092
KAFKA_AUTO_CREATE_TOPICS_ENABLE: "t
depends_on:
- zookeeper
ports:
- target:
published:
build:
volumes:
- /var/run/docker.sock:/var/run/docker.sock

jobmanager:

image: flink:latest
environment:

JOB_MANAGER_RPC_ADDRESS: jobmanager
ports:

- target:

published:

command: jobmanager
expose:

taskmanager:
image: flink:latest
environment:
JOB_MANAGER_RPC_ADDRESS: jobmanager
depends_on:
— jobmanager
command: taskmanager
expose:

authAll:
image: zolotas4/typhon-analytics-auth-all

Listing 3: Docker-compose YAML file for Kafka/Zookeeper parametrisation and instantiation

KUBERNETES

The TYPHON analytics engine can also be deployed on a local or remote Kubernetes
cluster as described in the following and in particular from the generation of TyphonDL
deployment scripts to the evaluation of successful deployment. The requirement of the
local and remote Kubernetes cluster is bound to the availability of the minikube and kubectl
command-line tools. The installation of minikube'* and kubectl'* is described at the official
Kubernetes documentation. Instructions for setting up a Kubernetes pool based on macOS
version 10.15.4, Strimzi v0.17.0"°, and DigitalOcean is provided in APPENDIX B.

Generate deployment scripts using TyphonDL

The first step is to follow the guidelines on how to employ TyphonDL in deliverable D3.3
Section 3 or D3 .4 (i.e. reporting on the final version of the “Hybrid Polystore Deployment
Language”).

13 https://kubernetes.io/docs/setup/learning-environment/minikube/#installation
1 https://kubernetes.io/docs/tasks/tools/install-kubectl/
15 An overview guide of Strimzi is available online at https://strimzi.io/docs/operators/master/overview.html.

Page 22 Version 1.0
Confidentiality: Public Distribution

8 July 2020

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

The TyphonDL wizard for Kubernetes allows to configure the parameters depicted in Table
3. Most importantly, Kafka URI defines the DNS/IP address and port of the machine
running the Kafka instance; Flink jobmanager heap size defines the overall heap memory
of the Flink jobmanager instance; Flink taskmanager memory process size defines the
memory size of Flink taskmanager instances; Flink taskmanager replicas defines the
number of Flink taskmanager instances; Kafka replicas defines the number of Kafka broker
instances; and Kubeconfig defines the path and file name of the Kubernetes cluster access
file (i.e. provided by the cloud provider running a Kubernetes cluster).
Table 3: Typhon Analytics Kubernetes configuration parameters in TyphonDL

Parameter Default value

Kafka URI typhon-cluster-kafka-bootstrap:9092
Flink jobmanager heap size 1024m

Flink taskmanager memory process size 1024m

Loggerlevel rootlogger INFO

Logging root target file

Logglevel akka INFO

Logglevel katka INFO

Logglevel Hadoop INFO

Logglevel zookeeper INFO

Logglevel flink ERROR

Logging flink target file

Flink jobmanager rest nodeport automatic

Flink taskmanager replicas 2

Kafka replicas 1

Kafka version 24.0

Kafka storage claim 100Gi

Zookeeper storage claim 100Gi

Kubeconfig myKubeConfig.kubeconfig

From the settings in Table 3, the TyphonDL plugin generates a folder with a set of
Kubernetes YAML-based scripts as indicated in Figure 9. Most importantly, the latter
contains the folders “flink” and “kafka” with respective Kubernetes deployment
configurations for Flink and Kafka; as well as a script named “deploy.sh” which wires

individual deployment steps together (cf. Section 4.2.2).
¥ (=5 = deploymentModel
¥ (-3 = analyticsKubernetes
¥ (=5 = flink
_E'!; flink-configuration-configmap.yami|
E'!,' jcbmanager-deployment.yamil
_E'!; jebmanager-rest-service.yaml
E'!,' jcbmanager-service.yamil
_E'!; taskmanager-deployment.yamil
¥ (=3 > kafka
P[5 = strimzi-0.17.0
E'!,' strimzi-cluster-operator-0.17.0.yamil
E‘!; typhon-clusterymil
[v3 README.md
5‘5‘ databases.yaml
= deploy.sh
E‘.} deploymentModel. xmi
5'!_,' polystore.yaml

Figure 9: Generated Typhon Analytics Kubernetes configuration files

8 July 2020

Version 1.0 Page 23
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

4.2.2 Deploy Apache Kafka and Flink in remote Kubernetes cluster

Apache Kafka and Flink pods and services can be deployed to a remote Kubernetes cluster
by executing the generated “deploy.sh” script depicted in Listing 4. This script employs
the generated Kubernetes Y AML-based scripts during deployment in a series of commands
of which the most essential are indicated by Listing 4 and described in the following.

First, line 2 sets a variable named kubeconfig to the file system path containing the
Kubernetes configuration file that has been retrieved from the cloud provider (cf. Section
42.3) and used throughout the script as extension of the kubectl command (e.g.
$kubeconfig in line 4).

Second, line 11 applies the generated databases.yaml configuration, which contains
Kubernetes database deployments and services such as a mongoDB for the Typhon
polystore as well as a batch job inserting models into the created database. Third, line 20
executes a command that completes when the insertion of models into the deployed
database is completed or 300 seconds have passed. Similarly, line 24 executes a command
that completes when all deployed databases are ready, or 100 seconds have passed.

Fourth, line 27 applies the generated polystore.yaml configuration and in particular deploys
the Typhon polystore service API and Ul as well as a TyphonQL server Kubernetes service.
Next, line 30 executes a command that completes in 300 seconds or when the Typhon API,
UI, and QL Kubernetes deployments have completed.

Page 24

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veHon D5.5 Event Publishing and Monitoring Architecture (Final Version)

Typhon

deploy.sh databases setup

execution triggered - Typhon mongoDB
. ' - Typhon database
batch job model

insertation

Lkubectl wait --for=condition=available
job.batch/insert-models

[Typhon database [300 seconds passed]
setup completed]

Typhon
polystore setup

- Typhon polystore API
and Ul service
- TyphonQL server
service

kubectl wait --for=condition=available
deployments

[Typhon polystore [300 seconds passed]
setup completed]

Typhon Kafka
setup

Strimzi cluster operator
(Kafka and Zookeeper)

kubectl wait kafka/typhon-cluster
--for=condition=Ready

[Typhon Kafka [300 seconds passed]
setup completed]

Typhon Flink
setup

- Flink job manager(s) ’ @
- Flink task manager(s)

Figure 10: Typhon Analytics Kubernetes deployment state machine diagram

Fifth, lines 35-41 deploy Apache Kafka and in particular the Strimzi cluster operator (i.e.
indicated by configuration files contained in the cluster-operator subdirectory of the
Strimzi installation directory). More specifically, the official Strimzi deployment
instructions!® are closely followed. Sixth, line 43 indicates the application of the
configuration file typhon-cluster.yaml which creates a Kubernetes cluster of type Katka
containing a number Kafka and Zookeeper instances (i.e. indicated by the replicas attribute
and default replication number: 1) with persistent storage claims. Next, line 45 indicates a
command that completes either then the Typhon cluster is ready, or 300 seconds have
passed.

16 https://strimzi.io/docs/operators/master/deploying.html#cluster-operator-str

8 July 2020 Version 1.0 Page 25
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

[#] deploy.sh &2 = 8

1 #!/bin/bash

2 kubeconfig="--kubeconfig=myKubeConfig. kubeconfig"

3 echo "Create Typhon namespace"

4 kubectl create namespace typhon $kubeconfig

5if [-n "$kubeconfig" 1; then

6 echo "Using Cluster configuration file ${kubeconfig}"
7fi

gsleep 1

9 echo "
10 echo "Create databases"

11 kubectl apply -n typhon -f databases.yaml Skubeconfig
12 sleep 1

14 helm repo add bitnami https://charts.bitnami.com/bitnami

15 helm install appdata -f appdata/values.yaml --set fullnameOverride=appdata --set
rootUser. password=Rrcv@nPgmeYDM2mj bitnami/mariadb-galera -n typhon

16

17

18 echo "

19 echo "Wait for the models to be inserted into the metadata database"

20 kubectl wait --for=condition=complete --timeout=380s -n typhon job.batch/insert-models Skubeconfig

21 kubectl logs job/insert-models

22 echo "

23 echo "Wait for all databases to be ready"

24 kubectl wait --for=condition=available ——timeout=10@8s --all -n typhon deployments S$kubeconfig

25 echo " "

26 echo "Deploy Polystore"

27 kubectl apply -n typhon -f polystore.yaml Skubeconfig

28 echo "

29 echo "Wait for the API, UL and QL to be ready"

30 kubectl wait --for=condition=available --timeout=30@s --all -n typhon deployments S$kubeconfig

3lecho " "

32 echo "Running Typhon Kafka K8s installation ..."

33 kubectl create namespace kafka $kubeconfig

3dsleep 1

35 kubectl apply -n kafka -f kafka/strimzi-@.17.08/install/cluster-operator/ sSkubeconfig

36 sleep 1

37 kubectl apply -n typhon -f kafka/strimzi-@.17.8/install/cluster-operator/820-RoleBinding-strimzi-
cluster-operator.yaml $kubeconfig

Jisleep 1

39 kubectl apply -n typhon -f kafka/strimzi-@.17.0/install/cluster-operator/@32-RoleBinding-strimzi-
cluster-operator-topic-operator-delegation.yaml $kubeconfig

40 sleep 1

41 kubectl apply -n typhon -f kafka/strimzi-8.17.0/install/cluster-operator/@31-RoleBinding-strimzi-
cluster-operator-entity-operator-delegation.yaml $kubeconfig

42 sleep 2

43 kubectl create -n typhon -7 typhon-cluster.yaml $kubeconfig

44 echo "Waiting for Typhon Kafka KBs deployment to complete ..."

45 kubectl wait kafka/typhon-cluster ——for=condition=Ready --timeout=30@s -n typhon $kubeconfig
46 echo "Typhon Kafka K8s deployment completed."

47 echo "Typhon Kafka K8s installation completed."

48 echo ""

49 eche "Running Typhon Flink K8s installation ..."

50 sleep 2

51 kubectl -n typhon apply -f flink/flink-configuration-configmap.yaml $kubeconfig
52sleep 1

53 kubectl -n typhon apply -f flink/jobmanager-service.yaml $kubeconfig

54sleep 1

55 kubectl -n typhon apply -f flink/jobmanager-deployment.yaml Skubeconfig
S56sleep 1

57 kubectl -n typhon apply -f flink/taskmanager—deployment.yaml $kubeconfig
S58sleep 1

59 echo "Typhon Flink K8s installation completed."

60 echo "It may take a few minutes for all services to be up and running."

61 echo "Polystore installation completed."

62

Listing 4: Typhon Analytics Kubernetes deployment shell script (deploy.sh) generated by TyphonDL

Finally, lines 51 to 57 deploy Apache Flink by applying a set of configuration files
including flink-configuration-configmap.yaml, jobmanager-service.yaml, jobmanager-
deployment.yaml, and taskmanager-deployment.yaml. More specifically, the file named
jobmanager-deployment.yaml defines the Kubernetes deployment of Flink job managers
(default replication number: 1) by pulling the Docker image flink:latest and executing the
Jjobmanager .sh (i.e. part of the Apache Flink Docker image named flink:latest) command
and setting up ports for RPC, blob, UI, and liveness probe (default: 6123, 6124, 8081, and
6123, respectively) as well as a volume containing further configuration files such as flink-
conf.yaml. Further, the file named jobmanager-service.yaml defines the Flink job manager
Kubernetes service with the same port numbers for RPC, blob, and UI as defined in the
Kubernetes Apache Flink job manager deployment described beforehand. Moreover, the
file name taskmanager-deployment.yaml defines the Kubernetes deployment of a number
of Flink task managers (default replication number: 2) by pulling the Docker image
[flink:latest, executing the taskmanager.sh (i.e. part of the Apache Flink Docker image
named flink:latest) command, setting up a RPC port (default: 6122), and defining an
equally named volume containing the same configuration files as employed by the job
manager deployment. Note that the completion of the Typhon Flink setup may take a few
minutes.

Page 26

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veron D5.5 Event Publishing and Monitoring Architecture (Final Version)

From the machine intended to access the Typhon web UI, a proxy to the remote Kubernetes
cluster is established by issuing the following command'”:

$ kubectl proxy --port=8080 --kubeconfig=myKubeConfig.kubeconfig

4.2.3 Evaluate availability and status of deployments in remote Kubernetes cluster

The next step is to browse to https://cloud.digitalocean.com/kubernetes/, login to account
(if required), and select the Kubernetes pool created in heading “Deploy remote Kubernetes
pool” as illustrated in Figure 11. Note that although this instruction is based on the
Digitalocean cloud provider, other providers will provide similar instructions as to
accessing the Kubernetes dashboard.

0 @ cloud.digitalocean.com 5 e & g

:%‘ k8s-1-16-6-do-2-lon1-1586886975495
{]

LON1 - 116.6-do.2

Actions v

Kubernetes Dashboard (3

Overview N

Getting Started

#) Create a Kubernetes cluster Thank you for using managed Kubernetes. Your
Kubernetes cluster is now ready.

an now setup and connect 1o the cluster

A

Figure 11: Access Kubernetes cluster dashboard web Ul.

A successful deployment of Apache Katka and Flink will result in show the Kubernetes
web Ul dashboard Workload Overview as illustrated in Figure 12.

17 Note that establishing a proxy into a Kubernetes cluster is executed in foreground by default (i.e. requiring the issuing
terminal/bash process to remain in execution).

8 July 2020 Version 1.0 Page 27
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version)

@TvyPHON

L (im}

kubernetes

= Overview

Cluster

Workloads

Cluster Roles
Namespaces Workload Status

Nodes

Overview
Daemon Sets

Workloads

@ cloud digitalocean.com

Deployments

Persistent Volumes
Storage Classes
Namespace
All namespaces -

Pods

Replica Sets

Gron Jobs

Daemon Sets
Daemon Sets
Name
Deployments
Jobs @ donode-agent
Pods
Replica Sets.
i @ csidonode
Replication Controllers
Stateful Sets.
Discovery and Load Balancing @ cilum
Ingresses
ervioes] @ Kkubeproxy
Config and Storage

Namespace

kube-system

kube-system -

Kube-system

Kube-system

Labels

app: do-node-agent

kés-app: cilium

3/
kubernetes.io/cluster-servi
ce:true

KBs-app: kube-proxy

tier: node

Age *

10 minutes

10 minutes

10minutes

10 minutes

Images

docker.o/digitalocean/do-
agent:3

quay.io/k8scsi/csknode-dr
1

iver-registrar:v1.2.0

docker.o/digitalocean/do-
csi-pluginvi.2.0

docker.io/cilium/cilium:v1.
6.4

gcr,ml%cog{ecnmamers/h
yperkube:v1.16.6

Figure 12: Kubernetes web Ul dashboard Workload Overview page.

In particular, the following named daemon sets, deployments, pods, replica sets, stateful
sets, services, config maps, and persistent volume claims have been made available:

Deamon Sets:

AN

do-node-agent
csi-do-node
cilium
kube-proxy

Deployments:

AN N N N N N NN

~
o
=N
A

AN N N NN

flink-taskmanager
flink-jobmanager
typhon-cluster-entity-operator
stimzi-cluster-operator
typhongl-server-deployment
relationaldatabase-deployment
polystore-ui-deployment
polystore-mongo-deployment
documentdatabase-deployment

flink-taskmanager-[UUID1]
flink-taskmanager-[UUID2]
flink-jobmanager-[UUID3]

typhon-cluser-entity-operator-[UUID4]

typhon-cluster-kafka-0
typhon-cluster-zookeeper-0

Page 28

Version 1.0
Confidentiality: Public Distribution

8 July 2020

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

stimzi-cluster-operator-[UUIDS5]
polystore-mongo-deployment-[UUID6]
polystore-ui-deployment-[UUID7]
relationaldatabase-deployment-[UUIDS]

Replica Sets:

SN N N N N NN

flink-taskmanager-[UUID9]
flink-jobmanager-[UUID10]
typhon-cluster-entity-operator-[UUID11]
stimzi-cluster-operator-[UUID12]
typhon-polystore-service-deployment-[UUID13]
typhonqgl-server-deployment-[UUID14]
relationaldatabase-deployment-[UUID15]
polystore-ui-deployment-[UUID16]
polystore-mongo-deployment-[UUID17]
documentdatabase-deployment-[UUID18]

Stateful Sets:

v
v

typhon-cluster-kafka
typhon-cluster-zookeeper

Services:

v
v
v
v
v
v
v
v
v
v

Con
v

ANENENEN

flink-jobmanager
typhon-cluster-kafka-external-bootstrap
typhon-cluster-kafka-brokers
typhon-cluster-kafka-bootstrap
typhon-cluster-kafka-0
typhon-cluster-zookeeper-client
typhon-cluster-zookeeper-nodes
documentdatabase
typhon-polystore-service
relationaldatabase

fig Maps (Kubernetes internal omitted):

flink-config
typhon-cluster-entity-topic-operator-config
typhon-cluster-entity-user-operator-config
typhon-cluster-kafka-config
typhon-cluster-zookeeper-config

Persistent Volume Claims:

v
v

data-O-typhon-cluster-katka-0
data-typhon-cluster-zookeeper-0

4.2.4 Access the Typhon Polystore Service web Ul
The Typhon Polystore Service web Ul can be accessed by browsing to http://HOST:8080
as depicted in Figure 13. The latter URL assumes “HOST” to be replaced by the IP address
8 July 2020 Version 1.0 Page 29

Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

5.1

5.1.1

of the Kubernetes pool load balancer machine (if available; recommended) or the IP
address of the Kubernetes pod running the Typhon Polystore web server.

O Not Secure — 178.62.81.75. < o t o
POLYSTORE SERVICE Ul g
Username
-]
Password
@
Login

Figure 13: Typhon Polystore Service web Ul login page.

EVALUATION

In the previous deliverable (D5.3) we evaluated the fitness of the proposed architecture for
developing query-driven analytics scenarios. This was achieved by implementing Alpha
Bank’s scenarios using our polystore analytics engine. In this deliverable we evaluate the
scalability of the analytics architecture using an e-shop simulator developed for this reason.
Further scalability evaluation will be conducted by use-case partners during the second
evaluation period of TYPHON.

E-SHOP SIMULATOR

Introduction

The evaluation of the proposed architecture requires ingestion of large volumes of data. In
order to internally evaluate our work before the final evaluation by the use-case partners
we developed data generators that produce large volumes of synthetic, but realistic, data.
Beyond the fact that these generators are able to produce realistic input, they can be
configured to generate big volumes of data allowing us to stress-test the proposed
architecture.

In our previous work, we presented a generator that produces realistic database events for
evaluating the fitness of our approach for implementing analytics scenarios for one of the
industrial partners (i.e., Alpha Bank). This database event generator was consuming
random data produced by a third-party web application (i.e., Mockaroo'®) to generate
database commands. The randomly generated data given to our database event generator
are stored in CSV files. The generator developed is consuming these CSV files to generate
database events, in the absence of real TYPHON database events at this stage. It is

18 https://www.mockaroo.com/

Page 30

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

5.1.2

important to highlight, that the proposed architecture is not meant to produce analytics of
interest by consuming data already stored in databases or text files (e.g., CSV files).
Proprietary tools (like Tableau [3]) or open-source (like Grafana [26]) are able to do so by
using widgets that consume data directly from CSV files, database and many other data
sources. By contrast, our architecture supports the extraction of analytics by consuming
database events.

In this section we present a second generator that can produce unlimited amounts of
synthetic data, helping with scalability testing. It simulates an e-shop application and is
able to generate a configurable number of database events. In contrast with the previous
one, events are produced without consuming pre-generated data stored in CSV files.

Implementation

As part of the evaluation of the proposed architecture we decided to develop a custom
configurable application that simulates the database transactions happening in an e-
commerce website. By having such a simulator, we are able to produce synthetic but as
realistic as possible database events that can be used as input to test different simple and
more complicated analytics scenarios, beyond those set by the project’s use-case partners.
We are also able to test the correctness of our proposed approach before providing the
architecture to our use-case partners for testing. By producing hundreds of thousands of
synthetic events we will also be able to stress test the approach and verify the claimed
scalability of the architecture and its underlying frameworks (i.e., Apache Flink and
Kafka). The e-commerce TyphonML model used in the simulator is shown in Listing 5.

8 July 2020

Version 1.0 Page 31
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

entity Review{ id : string[64]
id : string[64] items :-> BasketProduct[0..x]
content : string[1024] }
product —> Product[1]
comments :—> entity BasketProduct {
Comment."Comment.review"[0. .x] id: stringl[64]
user —> User[1] quantity : int
} date_added: date
product :—> Product[1]
entity Product { }
id : string[64]
name : string[64] entity Comment{
description : string[1024] id : string[64]
category —> Category[1] content : string[1024]
reviews :—> review —> Review[1]
Review."Review.product" [0. .x] responses :—> Comment[0..x]
} I
entity Order { entity CreditCard{
id : string[64] id : string[64]
order_date : date number : string[32]
totalAmount : int expiryDate : date

orderedProducts —> OrderedProduct[0..*x] }
users —> User[1]
paidWith —> CreditCard[1]

}

entity Category {
id: stringl[641]
name: string[32]

}

entity OrderedProduct {
id : string[64]
quantity : int
product —> Product[1]
b

entity User {
id : string[64]
name : string[32]
address :—> Address[1]
comments :—> Comment[0..x]
paymentsDetails :-> CreditCard[0. .x]
orders —> Order."Order.users"[0. .x]
reviews —>
Review."Review.product"[0. .x]
, basket :—> Basket[1]

entity Address {
id: stringl[64]
street: string [256]
country: string [32]
}

entity Basket {
Listing 5: The E-Commerce TyphonML model

Page 32 Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

The e-shop simulator is based on the notion of “Agents”. An agent simulates the behaviour
of one type of shopper (i.e., a User) in an e-shop. For example, a “Browsing Agent”
replicates the behaviour of a user who browses the catalogue of the website before placing
an order. In order to be able replicate realistic scenarios where different customers use the
e-shop in parallel, each agent implement the Java Runnable interface and as such multiple
agents can operate in parallel. The behaviour of the agent should be defined in the
implementation of the run() method of the Runnable interface. An example of an
implementation of an agent is shown in Listing 6. Developers can re-use query generators
(e.g., the SelectProductGenerator that creates select DML commands for the Product
entity) or build their own. They can also use the executeQuery(...) method to execute a
query against the polystore or the
createAndPublishPostEvent(...)/createAndPublishPreEvent(...) to skip the execution of
the command against the polystore and create directly a PostEvent/PreEvent object in the
analytics queues.

public class BrowsingAgent extends Agent implements Runnable {

@Override
public void run() {

final int MAX_NUM_OF_PRODUCTS_TO_BROWSE = 10;

ExecuteQueries eq = new ExecuteQueries();
ExecuteQueries.Utils utils = eqg.new Utils();

SelectProductGenerator spg = new
SelectProductGenerator();
Map<String, String> params =
new HashMap<String, String>();

Random r = new Random(seed);

for (int i = 0; i < MAX_NUM_OF_PRODUCTS; i++) {

params.put("seed", String.valueOf(seed));

String query = spg.generateQuery(params);

if (RunSimulator.goThroughPolystore) {
utils.executeQuery(query);

} else {
utils.createAndPublishPostEvent(query);

¥

this.randomSleep(1000, 5000);

Listing 6: A "Browsing" Agent

At the beginning, the simulator produces a number of users with random details (e.g., name,
Address, etc.). It also produces a number of random products for the e-shop. The number
of users and products is configurable using the config.properties file shown in Listing 7. In
case users and products were produced before and are already stored in the database, it is
possible to skip the creation steps by setting the appropriate configuration flags (i.e.,
generate_users and generate_products). If these flags are set to false the simulator queries

8 July 2020

Version 1.0 Page 33
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

5.1.3

the database to retrieve the already created users and products. Also, developers are able
to define what type of events (i.e., Pre or PostEvents) that the simultor will produce (see
property topic). Finally, in the configuration the number of the different types of agents
that the simulator should instantiate (NB.: the total number of agents should match the total
number of users as at the beginning each agent is assigned to one user entity).

1 goThroughPolystore = false

2 generate_users=true

3 num_of_users=600

4 generate_products=true

5 num_of_products=150

6 seed = 1892

7 num_of_buyer_agents = 0

8 num_of_buyer_reviewer_agents = 0
9 num_of_undecisive_agents = 0

10 num_of_browsing_agents=0

11 num_of_browsing_with_comment_agents=600
12 num_of_buyer_to_pre_agents =0

13 topic=POST

Listing 7: The config.properties file for the e-shop simulator

In order to be able to evaluate the scalability of the proposed architecture, the simulator
offers the option to mock the actual execution of the database commands against the
polystore and just publish the database event object directly to the analytics queues. This
way, the overhead of having to wait for the execution of the actual command against the
database in order to produce the Pre/PostEvent object is avoided allowing for the
production of thousands of analytics events in the same amount of time. Of course,
properties of the Event objects that require the execution of the command (i.e., ResultSet
and InvertedResultSet) are left empty thus, the option of not going through the polystore is
only used to evaluate scalability rather than the capabilities and features of the proposed
architecture. The latter will be fully evaluated through the use-case evaluations conducted
by the industrial partners of TYPHON over the 2™ evaluation period of the project.

Authorisation Chain Scalability Evaluation using the Simulator

One of the advantages of using the simulator is the fact that one can skip the execution of
the commands against the polystore and be able to produce a big number of events in a
short time. This is useful in order to be able to assess the scalability of the proposed
architecture. In this section we present the evaluation of the authorisation chain.

In order to test the scalability of the authorisation chain, we produced an increasing number
of events which were given as input into the PRE topic. More specifically, users (agents)
were simulating the placement of orders in the e-shop. Insert commands were generated
for the placed orders including details of the credit card used to pay the order. An example
TyphonQL query is shown below:

“insert Order {id: "...", order_date: "...", totalAmount: "...", orderedProducts: "[...]",
user:..., paidWith: CreditCard {id: “4782", number: "6007-2216-3740-9000",
expiryDate: "2021-06-25T08:36:13.656"’}

The three authorisation tasks were applying different validation rules on the credit card
used. The first task checks the existence of a credit card in the query, the second was
checking if the credit card has expired and the third if the credit card number was valid.

Page 34

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

The check condition method for all the three tasks was evaluating if the query arrived was
an insert order query. The rest (e.g., queries for creation of users, products, OrderedProduct
queries, etc.) were also evaluated by the “checkCondition(...)” method of each of the
authorisation tasks but as the condition was not satisfied were ended up in the AUTH queue
being approved.

As described in Section 3.2, if an event is rejected by one authorisation task, it is not passed
to the following task(s) in the chain but is directed automatically to the AUTH queue as
rejected. In the simulator the agents were producing orders that had always a credit card
assigned to them, so they were approved by the first task. From those, half (50%) were
having an expired credit card attached to them thus, they were rejected from the second
task. Those passed successfully from the second task have a 50% chance of having an
invalid credit card number. Following this pattern, we increased the variability as some of
the events will be passing the whole chain, while some will be rejected earlier.

The chain was deployed in a cluster consisting of three machines; one acting as the master
and the rest two as the workers!®. In Flink clusters, the master node is responsible for
orchestrating the process and the communication between the workers. In our experiment,
the master was also hosting the relevant KAFKA topics (PRE and AUTH). We restricted
the Flink deployment to allocate and use only 8GB of the available 64GB for each worker.
During the execution of the analytics code in the Flink cluster we measured the CPU and
memory consumption of the workers and master. We also kept track of the time needed for
the cluster to calculate the results for the input given.

Table 4 summarises the configuration parameters for each of the five execution scenarios
of increasing complexity.

Table 4: Summary of input to the authorisation chain scalability experiment

Users Products Lo
Events
600 150 92,557
1200 150 184,957
1800 150 277,357
2400 150 369,757
3000 150 462,157

Figure 14 shows the total execution time (in seconds) for processing all the event and
posting the (rejected/approved) PreEvent in the AUTH queue. The graph shows linear
scalability which confirms our expectation as the analytics architecture is built atop tools
such as Apache Flink and does not add any bottleneck.

19 All the machines were identical and had the following specifications: AMD Opteron(tm) Processor 4226 — 6-cores @
2.7Ghz, 4x16GB DD3 1066MHz RAM

8 July 2020

Version 1.0 Page 35
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @vveHon

Authoristion Chain Execution Time

N
Ul

N
)

—_
ol

—_
o

/

vl

Execution Time (in seconds)
(en]

92,557 184,957 277,357 369,757 462,157
Total Events

Figure 14: Total execution time for the authorisation chain experiment.

The average memory consumption and CPU utilisation for the workers is shown in Figure
15 and Figure 16. In this scenario, both workers requiring increasing amount of memory
for each scenario from the operating system while the CPU utilisation is between 60-70%.
The CPU utilisation and memory consumption is similar across the cluster’s workers which
shows even distribution of work.

Workers Memory Usage
4000
3500
3000
=
o 2500 B AVG Memory Worker 1
2 2000 B Max Memory Worker 1
o
% 1500 m AVG Memory Worker 2
=
1000 B Max Memory Worker 2
® Average Memory All Workers
500
0
92,557 184,957 277,357 369,757 462,157

Total Events

Figure 15: Workers’ memory consumption in the authorisation chain scalability experiment

Page 36 Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veron D5.5 Event Publishing and Monitoring Architecture (Final Version)

CPU Workers

92,557 184,957 277,357 369,757 462,157
Events

o]
o

~ 70

g
o O

w
o

CPU Utilisation (%
N S
o o

[uny
(==}

o

m Average CPU Worker 1 ~ m Average CPU Worker 2
Figure 16: Workers' CPU utilisation for the authorisation chain scalability experiment

The master node’s average memory increases steadily and averages between 450 and
650MB. The CPU is around 50% for all the experiments. This is justified by the fact that
the master node in this experiment was hosting the KAFKA queue and more significantly
the AUTH topic in which the workers were publishing the results. Thus, the CPU utilisaton
is justified by having the master node writing these events in the AUTH queue.

Master Average Memory Master Average CPU

=
2 400
o
g 200
(5]
= 0

92,557 184,957 277,357 369,757 462,157 92,557 184,957 277,357 369,757 462,157
Events Events

(o]
o
o
)]
o © O

CPU Utilisation (%)
- N W
S O O O

Figure 17: Master's average memory and CPU utilisation for the authorisation chain scalability experiment

5.1.4 Analytics Scalability Evaluation using the Simulator

In this section we present an experimental evaluation of the scalability of the analytics
architecture using the said simulator.

We implemented a scenario in which a list of the top products that users browsed within a
specific time window is produced. The simulator was instantiated with a varying number
of users each of which was randomly navigating a number of products. Navigation of the
catalogue has a result of generating one Select query each time a product page was visited.
An example generated query is the following:

>

Jfrom Product p select p where p.@id = “....

8 July 2020 Version 1.0 Page 37
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

The implemented analytics scenario, consumes only those events (i.e., select events on the
table Product) and calculates the top visited products in a specific time window (e.g., every
2-3 days). Such a scenario firstly, demonstrates the novelty of the proposed approach of
extracting analytics through database events. Information like this is not normally stored
in databases. Thus, calculating such analytics is not possible by querying the databases.
Services such as Google Analytics® can pull this information by running analytics scripts
at the application layer (e.g., cookies or scripts running at the client side/browser). This
way requires adding analytics code to the e-shop application code that will track the user
behaviour which leads in mixing business logic with analytics logic.

Secondly, this scenario includes a good variety of Flink operators in order to produce the
desired results, thus we are confident that it includes operators that business analysts will
uses to define most of their analytics scenarios. It includes mapping and filtering operators,
timestamp assigners, time windowing, key grouping and aggregators.

Finally, it relies on using Flink’s built-in operators for extracting analytics (i.e., aggregators
on keyed groups). We believe that this is important as results that demonstrate non-linear
scalability might not be due to the architecture not being scalable, but the algorithms used
in the analytics scenarios not being scalable. For example, if in the scenario a clustering
algorithm, that has non-polynomial complexity, is used, then the evaluation will reveal a
total exponential scalability that might not be due to the analytics architecture, but due to
the algorithm used.

As it might be the case that users in real deployments might exploit such an analytics
scenario to promote their products (i.e., by visiting their product page repeatedly) and in
order to test the slots feature introduced in Section 2, we were amending the PreEvent
object linked to the PostEvent object that our simulator generated with the id of the user
that requested the execution of the command. Such information can be taken for example
from the query where the session user id is passed as a comment to the produced query.

In order to test the scalability of the architecture, we produced an increasing number of
events which were given as input into the analytics architecture. The analytics code was
deployed in some cluster cluster configuration as described in the evaluation of the
authorisation chain (see Section 5.1.3). During the execution of the analytics code in the
Flink cluster, we measured the CPU and memory consumption of the master and the
workers. We also kept track of the time needed for the cluster to calculate the results for
the input given. The cluster and the queues were reset before each run. Measurements of
the passive memory of the system before deploying the cluster were taken in order to
calculate the actual impact of deploying and running the architecture in the cluster for each
scenario.

Table 5 summarises the configuration parameters for each of the five execution scenarios
of increasing complexity.

20 https://analytics.google.com/analytics/web/#/

Page 38

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veron D5.5 Event Publishing and Monitoring Architecture (Final Version)

Table 5: Summary of input to the analytics scenario scalability experiment

Related Total

Users Products Events Events
600 150 90,000 92,557
1200 150 180,000 184,957
1800 150 270,000 277,357
2400 150 360,000 369,757
3000 150 450,000 462,157

The simulator ran in five different configurations. In each of them a number of users
(column “Users”) and products (column “Products”) were generated initially (along with
their appropriate insert commands). As the number of the related to the analytics scenario
events (i.e., the aforementioned “select” events) are affected by the total number of users,
we increased in each run the number of users. The column “Related Events” shows the
total number of events that the analytics engine consumed to produce the results for the
top-browsed scenario. The column “Total Events” shows the total number of events in the
Kafka POST queue and includes other commands necessary to construct the simulated
scenario (e.g., insert commands for generating mock users, products, etc). The latter, also
passed into the analytics scenario but were filtered in the first operator.

The time needed for our architecture to produce the results for the five simulated scenarios

is shown in Figure 18. The graph shows linear scalability which confirms our expectation
as the analytics architecture is built atop scalable tools and does not add any bottleneck.

Execution Time in Seconds

g O I
o o O

Execution Time (in seconds)
=N W
o o o o o

92,557 184,957 277,357 369,757 462,157
Total Events

Figure 18: Execution time for the five simulations in the analytics scalability experiment

The average workers’ average and max memory consumption for each worker for the five
simulated scenarios are shown in Figure 19 while the average CPU utilisation is shown in
Figure 20. The workers are using above 80% of the available processing power on average
across the five different scalability scenarios. Also, the JVM is claiming all the necessary
memory (especially in the last 4 of the five scenarios) but is not running out of memory
which is explained by the Java garbage collector replacing unnecessary memory when
needed. The load balance is equally split among the workers both in terms of CPU

8 July 2020 Version 1.0 Page 39
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @vveHon

utilisation and memory usage which demonstrates that the workload is shared equally in
the cluster.

Workers Memory Usage

4000
3500
g 3000
= 2500 ® Average Menory Worker 1
22000 ® Max Memory Worker 1
o
g 1500 m Average Memory Worker 2
= 1000 B Max Memory Worker 2
500 m Average Memory All Workers
0
92,557 184,957 277,357 369,757 462,157
Events
Figure 19: Workers’ memory consumption in the analytics scalability experiment
Average CPU Workers
100
<
é 80
s
= 60
(35}
2
= 40
=)
o)
- 20
[a W)
| &)
0
92,557 184,957 277,357 369,757 462,157
Total Events
m Average CPU Worker 1 ~ m Average CPU Worker 2
Figure 20: Workers’ CPU use in the analytics scalability experiment
Finally, the CPU utilisation and memory consumption for the master node are given in
Figure 21. Both remain quite low as in this experiment the workers are only reading from
the POST queue hosted in the master and thus the master is not required to perform any
writes to the KAFKA queue.
Page 40 Version 1.0 8 July 2020

Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

Average Memory Master Average CPU Master
420 60
<
S 410 S 50
= 400 5 ‘3*3
-
S 390 8
= = 20
370 E 0 [| [| [| | |
92,557 184,957 277,357 369,757 462,157 © 92,557 184,957 277,357 369,757 462,157
Total Events Total Events

Figure 2

1: Average master's memory and CPU utilisation for the analytics scenario scalability experiment

CONCLUSIONS AND FUTURE WORK

In this document the final event publishing and monitoring architecture and the data event
metamodel that describes the structure of the events stored in the analytics messaging
queues were presented. Beyond the post-execution analytics architecture, in this document
we discuss in detail the pre-execution authorisation mechanism. The deployment facilities
based on Docker and Kubernetes are also presented. Finally, the scalability of both the
authorisation and the analytics components of the proposed architecture is evaluated.

In the future, it would be of interest to explore if authorisation tasks can be re-arranged
automatically in the chain. Tasks that reject a higher proportion of events or require less
time to execute would be useful to be positioned earlier in the chain. Machine learning
algorithms can be used to identify the most efficient chains based on different features
among those described (i.e., execution time and rejection rate).

Finally, applying limits to the number of returned results stored in the resultSet and
invertedResultSet is of interest. Beyond using approaches similar to LIMIT in relational
databases, another approach would be that of returning a desired subset of the results using
different criteria (e.g., entities created within a specific time period).

8 July 2020

Version 1.0 Page 41
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

APPENDIX A

ANALYTICS HOW-TO GUIDE

Prerequisites
1) This guide assumes that you have already installed all the necessary tools to create
and run a Polystore (e.g., TyphonML, TyphonDL, etc.).
i1) You need to make sure that you have those updated (from their respective Eclipse

update sites and by doing a docker-compose pull) to their latest version.
1i1) Start by creating the polystore as described in the appropriate guide. Make sure that
in the step of the DL wizard you have checked the “Use Typhon Data Analytics”
option, as shown in the image below.
1v) Run the Polystore.
e o
Create a TyphonDL model
€ Name must not be empty

Folder: [Usersjthanoszolotas/Documents/Git Projects/analyticsarc/ac.york.typhon.analytics.examples.eshopPolystore

Name: ||

Template: ~ Docker Compose

Use Typhon Data Analytics ‘_

Api Host: localhost

Api Port: 8080

@ Cancel

Figure 22: TyphonDL wizard that enables analytics

Work with the Analytics Component

1) Download (if you do not have already done) Eclipse with Java support from here:
https://www .eclipse.org/downloads/packages/release/2020-03/r/eclipse-ide-java-

developers

i1) Download the analytics zip file from here:
https://drive.eoogle.com/file/d/15tyOF9yKnVsl0JxbbB6eQUvONA 1rH04d/view Tusp=sh
aring

1i1) Unzip and import the two projects (ac.york.typhon.analytics.examples.howto and
ac.york.typhon.analytics) into Eclipse by going to File = Import = Existing
Projects into Workspace

1v) The ac.york.typhon.analytics.examples.howto project is an example project that
has a simple analytics scenario (TestAnalyticScenario class) and a runner
(AnalyticsRunner class) in it.

V) If you navigate to the pom.xml file you will see that it has a dependency to the
ac.york.typhon.analytics project.
Vi) You can either use this project to test analytic scenarios or you can create another

Maven project that has the same dependency (to the ac.york.typhon.analytics)

vii)) The ac.york.typhon.analytics project includes the analytics infrastructure. You do
not need to do anything with it. It should just be included as a dependency when
you create a new Analytics project, as described above.

Page 42

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

Please note: The generated docker compose defines port 29092 for external (outside
Docker) access to the Kafka queue and port 9092 for internal (inside Docker) access. As
this guide describes how to write analytics in your local IDE, the configuration is set to
access port 29092. If you want to export the jar and run it inside Docker, then you need to
open the “resources/typhonAnalyticsConfig.properties” file and set the port in line 12 to
9092.

Write Analytics

1) Create a new maven project that has a dependency on the ac.york.typhon.analytics
project. Of course you can instead wuse the example project
(ac.york.typhon.analytics.examples.howto) you have imported.

ii) Create a new class (right click on the src folder > New = Class) that implements
the “IAnalyzer” interface. If you use the example project you will see that such a
class already exists (named “TestAnalyticScenario”).

@ New Java Class
Java Class

| /iy The use of the default package is discouraged. ©\

-
Source folder: ac.york.typhon.analytics.examples.howto/src Browse...
Package: (default) Browse...
Enclosing type:

! Name: ‘HowTDExampleClas# *_

Modifiers: o public package
abstract final

Superclass: java.lang.Object Browse...
Interfaces: n ac.york.typhon.analytics.analyzer.|Analyzer Add...

Remove
Which method stubs would you like to create?

public static void main(String[] args)
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

Generate comments

Sre—— e rr————— = = A O A A AL I A R R TR A T A e AN

Figure 23: Create a new Analytics Scenario

1i1) The new class will include the method you need to implement called “analyze
(DataStream<Event> eventsStream). The eventsStream parameter are the
PostEvent objects arriving to the POST queue of the analytics architecture. You
need to write Flink code to consume them and produce analytics of interest (more
on this later).

8 July 2020

Version 1.0 Page 43
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

1#® import org.apache.flink.api.common.functions.FilterFunction;||

9

18 public class HowToExampleClassWithSomeLogic implements IAnalyzer {

12&

13

@0verride

public void analyze(DataStream=Event> eventsStream) throws Exception {

Figure 24: The "analyze" method that needs to be implemented

In order to run the analytics code you need to create a main class which calls the
classes that include analytics. Create a new class (right click on the src folder =
New -2 Class), give it a name (e.g., RunnerClass) and include a main method in it
(If you use the example project this is the AnalyticsRunner class.). You need to
create such a class only once for each analytic scenario.

a.

b.

‘e @ New Java Class

Java Class
1 Create a new Java class. ©

Source folder: ac.york.typhon.analytics.examples.howto/src Browse...

| Package: ac.york.typhon.analytics.examples.howto Browse...

Enclosing type:

Name: | RunnerClass | <—

Modifiers: ° public package

abstract final
Superclass: java.lang.Object Browse...

Interfaces: Add

Which method stubs would you like to create?
public static void main(String[] args) h
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

Generate comments

| @ Cancel [Finish |

Figure 25: A runner class for the analytics scenario

You need to make a call to the class that includes an analytics scenario using
the ChannelBuilder.build(...) method as shown in the code below. This method
takes as a first parameter the name of the class that includes analytics code (e.g.,
HowToExampleClass) and as a second parameter the name of the Kafka topic
from which events should consumed. This should be AnalyticTopicType.POST
always when writing analytics for Typhon Post Events.

Remember to declare that your main class throws an exception (or surround the
ChannelBuilder methods with try...catch statements)

Page 44

Version 1.0 8 July 2020
Confidentiality: Public Distribution

@TvyPHON

D5.5 Event Publishing and Monitoring Architecture (Final Version)

1= import ac.york.typhon.analytics.channel.ChannelBuilder;
2 import ac.york.typhon.analytics.commons.enums.AnalyticTopicType;

3

4 public class RunnerClass {

public static veid main(Stringl[] args)[throws Exception {

// Caller for the Te
ChannelBuilder.build(new HowToExampleClass()| AnalyticTopicType.POST);

// If you need to run other analytics scenarios then copy-paste the above line and replace the
// "TestAnalyticScenario()" with the name of the class the contains the new analytic scenario

Figure 26: The runner class implementation

V) Run this main method as a Java Application. Your analytics code inside the
HowToExampleClass will start consuming PostEvents as these arrive in the
Polystore. As the analyze method’s body is empty, this will do nothing. More on
how to write analytics code is described in the next section.

IMPORTANT!!! Post events in Typhon are created every time a TyphonQL query is
executed. Thus, your code will produce results, if and only if you start using the polystore
and execute some TyphonQL queries.

Writing Analytics Code with Flink

Flink is a distributed execution framework. By using its operators Flink can easily
distribute you code without requiring user’s input/configuration. The goal of this guide is
not to train people on writing Flink code. There are plenty of resources on this online. The
basic idea is that Flink works with streams (in the context of the analytics component).
Steams as the name suggests, provide continuous real-time input to your programs. In the
analytics component, the stream of events is the “eventsStream” parameter is the analyse
method. This is configured to automatically consume all the events coming to the POST
queue.

To consume streams using Flink, one should use Flink Operators. A comprehensive list of
all the available Flink operators is available here: https://ci.apache.org/projects/flink/flink-
docs-stable/dev/stream/operators/

This should be the starting point of anyone trying to use Flink as they contain a brief
description and an example of how to make them work. You will find yourself mostly
having to use the filter and map function (the first filters events based on a condition, the
second is used to transform objects to other forms). Experiment with these 2 first and then
you can proceed to more complicated operators. Below is a simple example that consumes
Typhon PostEvents and produces at the end a list of the credit card numbers that have
expired. You can find the code into the “HowToExampleClassWithSomeLogic” class of
the “ac.york.typhon.analytics.examples.howto” project. The example is based on an
ECommerce polystore example.

8 July 2020

Version 1.0 Page 45
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

1@ import org.apache.flink.api.common.functions,FilterFunction;[]
9

10 public class HowToExampleClassWithSomeLogic implements TAnalyzer [

11
126 @0verride
=13 public void analyze(DataStream<Event> eventsStream) throws Exception {
14
wlse eventsStream. filter(new FilterFunction<Event=({) {
16
178 @0verride
218 public boolean filter(Event arg@) throws Exception {
19 // Cast Event to PostEvent.
20 PostEvent postEvent = (PostEvent) arg®;
21 // Filter events and get only those that are insert statements of CreditCard entities in the eshop example.
22 if (postEvent.getQuery().contains("insert CreditCard")) {
23 return true;
24
25 return false;
26
27 H
28 // Create a Tuple credit card number and credit card expiry year
29= .map (new MapFunction<Event, TupleZ<Strinag,String=>() {
30
312 @0verride
232 public Tuple2<String,String> map(Event argd) throws Exception {
33 PostEvent postEvent = (PostEvent) argd;
34 // Get the number of the card from the gquery
35 String number = postEvent.getQuery().split{"number: \""}[1]l.split("\", expiryDate:")[8];
36 // Get the expiry date and then the year from the query
37 String expiryDate = postEvent.getQuery().split("expiryDate: \"")[1]l.split{"\"}")[@];
38 String expiryYear = expiryDate.substring{expiryDate.length{)=4, expiryDate.length())
39 // Create the tuple and pass it on
48 return new Tuple2(number, expiryYear);
41 }
42 H
43 f/ Filter those that has expired since the previous year
ndde .filter(new FilterFunction<Tuple2<Strina, String==() {
45
463 @lverride
=47 public boolean filter(Tuple2<String, String> arg®) throws Exception {
48 // Get the year from the tuple (f@ is the first entry, f1 is the second entry in a tuple, etc.
49 int expiryYear = Integer.parselnt(argd.f1);
50 if (expiryYear == 2019) {
51 return true;
52
53 return false;
54 ¥
55
56 H
57 // Print the tuples number and expiry year. That's why we carried the number as well in the tuple.
58 Jprint();
59 ¥
60
61 }
62
Figure 27: An example analytics scenario
APPENDIX B

Installation of kubectl command-line tool

$ curl -LO "https://storage.googleapis.com/kubernetes-release/release/$S (curl
-s https://storage.googleapis.com/kubernetes—-
release/release/stable.txt) /bin/darwin/amd64/kubectl"

$ chmod +x ./kubectl

$ sudo mv ./kubectl /usr/local/bin/kubectl

Deploy remote Kubernetes pool

Browse to https://cloud.digitalocean.com/kubernetes/, login to account (if required), and select
“Create a Kubernetes Cluster” as illustrated in Figure 28 and Figure 29.

Page 46 Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veron D5.5 Event Publishing and Monitoring Architecture (Final Version)

0 @ cloud digitalocean.com g uj B (=,

Starting at $10/mo

' Master node included in starting
7 price

Kubernetes in minutes . oS Exliyrslmindbud)

. Performance melrics
Create a cost-effective, ready-to-use Kubernetes cluster in " Performance metrics

minutes so you can focus on building your application. ~ Automated upgrades

Inte oad balancers and
; age
Create a Kubernetes Cluster |
|

Why choose managed Kubernetes?

oo o
Simplify Kubernetes Save time with guided configuration Focus more on your business

DigitalOcean continuous

cloud.digitalocean.com

. Search by resouce name or P (Cmc)

Enter pool name o Standard nodes &, $10/Month per node ($0.015/hr) -
pool-wi18abm7h Balanced with a healthy amount of memory rcludes: 2 GB Memory / 1VCPU

Add Additional Node Pool

vonTHiy Rate $30.00/month soo4mou

Add Tags

Add optional tags to your cluster.

Type tags here

Choose a name
You can edit the default name to something meaningful to you.

Enter Cluster name
k8s-1-16-6-do-2-lon1-1586886975495

Create Cluster.

Figure 29: Deploy remote Kubernetes pool (step 2 of 2).

Download cloud provider Kubernetes configuration

Browse to https://cloud.digitalocean.com/kubernetes/clusters/, login (if required), and download the
configuration of (an existing Kubernetes cluster) by selecting “Actions” and then “Download Config”
as illustrated in Figure 30.

8 July 2020 Version 1.0 Page 47
Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

(4] @ cloud digitalocean.com 2 0

Search by resource name or IP (Cmd+E)

‘%5’ k8s-1-16-6-do-2-lon1-1586886975495
¢ LON1-116.6-do.2
o

Dr
Kubernetes View Nodes
. Set S
Getting Started etting:
Edit Tags
Desiroy

(~) Create a Kubernetes cluster Thank you for using managed Kubernetes. Your
Kubernetes cluster is being provisioned.

Provisioning is usually complete within 4 minutes. You can configure the

cluster while

Install 1-Click A

Skip Getting Started

Dont Show Again

Figure 30: Download cloud provider Kubernetes cluster YAML-based configuration file.

Page 48 Version 1.0 8 July 2020
Confidentiality: Public Distribution

@veHon D5.5 Event Publishing and Monitoring Architecture (Final Version)

BIBLIOGRAPHY

[1T J. Kreps, N. Narkhede and J. Rao, “Kafka: A distributed messaging system for log processing,”
in Proceedings of the NetDB, 2011.

[2] The Apache Software Foundation, “Powerd by Flink,” 2019. [Online].
Available: https://flink.apache.org/poweredby.html. [Accessed 28 June 2019].

[3] TABLEAU SOFTWARE, LLC, “Business Intelligence and Analytics Software,” [Online].
Available: https://www.tableau.com/. [Accessed May 2020].

[4] E.Friedman and K. Tzoumas, Introduction to Apache Flink: stream processing for real time and beyond,
O'Reilly Media, Inc., 2016.

[5] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Raoand V. Y. Ye,
“Building LinkedIn's Real-time Activity Data Pipeline,” IEEE Data Engineering, vol. 35, no. 2, pp. 33-45, 2012.

[6] S.Boschiand G. Santomaggio, RabbitMQ cookbook, Packt Publishing Ltd, 2013.

[71 The Apache Software Foundation, “Flexible & Powerful Open Source Multi-Protocol Messaging,” 2019. [Online].
Available: https://activemq.apache.org/. [Accessed 2019 June 20].

[8] P.Dobbelaere and K. S. Esmaili, “Kafka Versus RabbitMQ: A Comparative Study of Two Industry Reference
Publish/Subscribe Implementations: Industry Paper,” in Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems, New York, NY, USA, 2017.

[9] The Apache Software Foundation, “What is Apache Flink?,” 2019. [Online].
Available: https://flink.apache.org/flink-architecture.html. [Accessed 20 June 2019].

[10] The Apache Software Foundation, “Apache Spark,” 2019. [Online].
Available: https://spark.apache.org/. [Accessed 20 June 2019].

[11] The Apache Software Foundation, “Apache Storm,” 2015. [Online].
Available: https://storm.apache.org/. [Accessed 20 June 2019].

[12] T. Chen and X. Huang, “Fight Peak Data Traffic On 11.11: The Secrets of Alibaba Stream Computing,”
27 12 2017. [Online]. Available: https://102.alibaba.com/detail7id=35. [Accessed 28 June 2019].

[13] S.Rooney, P. Urbanetz, C. Giblin, D. Bauer, F. Froese, L. Garcés-Erice and S. Tomic,
“Kafka: the Database Inverted, but Not Garbled or Compromised,” in /EEE International Conference on
Big Data (Big Data), 2019.

[14] Confluent.io, “Kafka Connect,” 2020 June 30. [Online].
Available: https://docs.confluent.io/current/connect/index.html. [Accessed 2020 June 30].

[15] ZenDesk, “Maxwell's Daecmon,” [Online]. Available: https://maxwells-daemon.io/. [Accessed 1 July 2020].

[16] Oracle Corporation, “Real-time access to realtime Information, Oracle White Paper,”
Redwood Shores, California, 2015.

[17] Debezium Community, “Debezium,” 2020. [Online]. Available: https://debezium.io/. [Accessed 23 June 2020].

[18] Confluent, Inc, “Confluent: Apache Kafka & Event Streaming Platform for Enterprise,” 2020. [Online].
Available: https://www.confluent.io/. [Accessed 01 July 2020].

[19] Confluent Inc, 2020. [Online]. Available: https://assets.confluent.io/m/40dd744b4c79d1e8/original/20190820-DS-
Confluent_Platform.pdf? ga=2.184200038.1585514032.1593583811-
120261339.1587742459& gac=1.50595419.1593584512.CjwKCAjwxev3BRBBEiwAiB PWI7
usRtLc9G241yJyqbUzL8ID2Y guhzzosqBExdOENVI9cHCJCsBhB. [Accessed 2020 July 01].

[20] L. M. Rose, R. F. Paige, D. S. Kolovos and F. A. Pollack, “The Epsilon Generation Language,” in European
Conference on Model Driven Architecture-Foundations and Applications, 2008.

[21] G. Shlyuger, “Big Data Analytics approach for security data processing,” 2018.

[22] J. Widom and S. Ceri, Active database systems: Triggers and rules for advanced database processing, Morgan
Kaufmann, 1996.

[23] D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,” IEEE Cloud Computing, pp. 81--84,2014.

[24] P. Hunt, M. Konar, F. Junqueira and B. Reed, “ZooKeeper: Wait-free Coordination for Internet-scale Systems.,” in
USENIX annual technical conference, Boston, MA, USA, 2010.

[25] Docker Inc., “Docker Hub,” 2019. [Online]. Available: https://hub.docker.com/. [Accessed 18 June 2019].
[26] Grafana Labs, “Grafana: The open-source Observability Platform,” [Online]. Available: https://grafana.com/.

[Accessed May 2020].
[27] Docker Inc., “Docker Compose,” 2019. [Online]. Available: https://docs.docker.com/compose/. [Accessed 18 June
2019].
8 July 2020 Version 1.0 Page 49

Confidentiality: Public Distribution

D5.5 Event Publishing and Monitoring Architecture (Final Version) @veron

[28] YAML.org, “YAML: YAML Ain't Markup Language,” 2019. [Online]. Available: https://yaml.org/. [Accessed 18
June 2019].

[29] J. Baier, Getting Started with Kubernetes, Packt Publishing Ltd, 2015.

[30] The Apache Software Foundation, “Welcome to Apache Zookeeper,” 2019. [Online]. Available:
https://zookeeper.apache.org/. [Accessed 20 June 2019].

[31] D. Goldin, S. Srinivasa and V. Srikanti, “Active databases as information systems,” in International Database
Engineering and Applications Symposium, 2004.

Page 50 Version 1.0 8 July 2020
Confidentiality: Public Distribution

