

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L’Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

TYPHON Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the TYPHON Project Partners.

Project Number 780251

D7.8 Integrated Platform - Final Version

Version 1.2
28 July 2020

Final

Public Distribution

CLMS

D7.8 Integrated Platform - Final Version

Page ii Version 1.2 28 July 2020

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Alpha Bank

Vasilis Kapordelis

40 Stadiou Street

102 52 Athens

Greece

Tel: +30 210 517 5974

E-mail: vasileios.kapordelis@alpha.gr

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Centrum Wiskunde & Informatica

Tijs van der Storm

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 9333

E-mail: storm@cwi.nl

CLMS

Antonis Mygiakis

Mavrommataion 39

104 34 Athens

Greece

Tel: +30 210 619 9058

E-mail: a.mygiakis@clmsuk.com

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

GMV Aerospace and Defence

Almudena Sánchez González

Calle Isaac Newton 11

28760 Tres Cantos

Spain

Tel: +34 91 807 2100

E-mail: asanchez@gmv.com

OTE

Theodoros E. Mavroeidakos

99 Kifissias Avenue

151 24 Athens

Greece

Tel: +30 697 814 7618

E-mail: tmavroeid@ote.gr

SWAT.Engineering

Davy Landman

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 633754110

E-mail: davy.landman@swat.engineering

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of L’Aquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univaq.it

University of Namur

Anthony Cleve

Rue de Bruxelles 61

5000 Namur

Belgium

Tel: +32 8 172 4963

E-mail: anthony.cleve@unamur.be

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Volkswagen

Behrang Monajemi

Berliner Ring 2

38440 Wolfsburg

Germany

Tel: +49 5361 9-994313

E-mail: behrang.monajemi@volkswagen.de

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Updated Architecture 01 June 2020

0.2 API Services 05 June 2020

0.3 Initial User Guide 19 June 2020

0.4 Updated Workflows 21 June 2020

0.5 Content Corrections 24 June 2020

0.6 Updated Table of Figures, Table of Abbreviations 10 July 2020

0.7 Formatting Corrections 15 July 2020

0.8 Updated Continuous Integration & Deployment 20 July 2020

0.9 Added contributions from SWAT, University of L‟Aquila, ATB,

University of Namur for User Guide

24 July 2020

1.0 Finalize conclusions, add requirements 24 July 2020

1.1 Address internal review comments, update ML documentation,

add Analytics documentation

27 July 2020

1.2 Address further review comments, finalisation for EC submission 28 July 2020

D7.8 Integrated Platform - Final Version

Page iv Version 1.2 28 July 2020

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

2. Updated Platform Architecture ... 1

2.1 Components Overview ... 1
2.1.1 Typhon ML ... 1
2.1.2 Typhon DL .. 2
2.1.3 Polystore API .. 2
2.1.4 Polystore UI .. 2
2.1.5 Metadata Database .. 2
2.1.6 Evolution Toolset .. 2
2.1.7 Typhon QL Server .. 3
2.1.8 Analytics Service .. 3
2.1.9 Storage Databases ... 4

3. Workflows .. 4

3.1 Design .. 5

3.2 Deployment .. 5

3.3 Runtime .. 6
3.3.1 Query Execution ... 6
3.3.2 Evolution ... 7

4. Hybrid Polystore API & UI .. 8

4.1 API Services ... 8
4.1.1 User Services .. 8
4.1.2 Status Services .. 8
4.1.3 Model Services.. 8
4.1.4 Query Services .. 9
4.1.5 Backup/Restore Services ... 9

4.2 Polystore UI ... 9

5. Continuous Integration & Deployment Process ... 10

5.1 Overview .. 10

5.2 Typhon Eclipse plugins .. 10

5.3 Polystore API ... 11

5.4 Polystore UI ... 11

5.5 Evolution .. 12

5.6 Typhon QL ... 12

5.7 Archiva Repository... 12

5.8 Distribution Project ... 12

5.9 GitHub Integration... 13

5.10 Slack Integration .. 13

6. User Guide ... 14

6.1 Installation ... 14
6.1.1 Installing Eclipse ... 14
6.1.2 Installing Docker ... 16
6.1.3 Typhon Toolset ... 16
6.1.4 Optional Libraries ... 16

6.2 Usage ... 17
6.2.1 Design Example .. 17
6.2.2 Runtime Example .. 26

6.3 Component Documentation.. 29

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page v

Confidentiality: Public Distribution

6.3.1 Typhon Modelling Language (ML) .. 29
6.3.2 Typhon Deployment Language (DL) .. 39
6.3.3 Typhon Query Language (QL) Eclipse Plugin.. 54
6.3.4 Polystore API .. 61
6.3.5 Typhon Query Language (QL).. 69
6.3.6 Evolution ... 76
6.3.7 Analytics ... 103

6.4 Known issues .. 115

7. Conclusions .. 116

TABLE OF FIGURES

Figure 1: Architecture of TYPHON Platform... 5
Figure 2: Query Execution Workflow .. 6
Figure 3: Evolution Workflow .. 7
Figure 4: Typhon DL CI Workflow .. 11
Figure 5: Polystore API CI Workflow .. 11
Figure 6: Distribution CI Workflow ... 13
Figure 7: Downloading Eclipse Installer .. 14
Figure 8: Installing Eclipse for Java Developers .. 15
Figure 9: Eclipse Installation .. 15
Figure 10: Installing New Software to Eclipse IDE ... 16
Figure 11: Sirius Installation... 17
Figure 12: Creating new Java Project ... 18
Figure 13: Creating Project ... 18
Figure 14: Creating TML file ... 19
Figure 15: Xtext project prompt ... 20
Figure 16: Simple ML example .. 21
Figure 17: Creating XMI file from TML .. 22
Figure 18: Creating Visual Model Representation ... 23
Figure 19: Visual Model Representation .. 23
Figure 20: Creating TDL file .. 24
Figure 21: Generating Deployment Scripts .. 25
Figure 22: Sample Project files after model XMI file generation ... 25
Figure 23: Polystore UI Login Page ... 26
Figure 24: Polystore UI Manage Users Page .. 27
Figure 25: Polystore UI Models Page ... 28
Figure 26: Query Menu .. 29
Figure 27: TyphonML overview ... 30
Figure 28: Custom data types ... 31
Figure 29: Conceptual entity... 32
Figure 30: Relational DB .. 33
Figure 31: Document DB .. 33
Figure 32: Graph DB .. 34
Figure 33: Key-Value DB ... 34
Figure 34: Change operators ... 35
Figure 35: Graphical editor ... 37
Figure 36: OpenAPI generation .. 38
Figure 37: An instance of generated OpenAPI specification .. 39
Figure 38: TyphonDL DB Template preferences ... 42
Figure 39: TyphonDL Creation Wizard .. 44
Figure 40: TyphonDL Creation Wizard: Page one ... 45
Figure 41: TyphonDL Creation Wizard: Configuring the Analytics component Docker Compose vs. Kubernetes) 45
Figure 42: TyphonDL Creation Wizard: Choosing the DBMS for each database (Docker Compose vs. Kubernetes) 46
Figure 43: TyphonDL Creation Wizard: Further database configuration (MariaDB container vs. MongoDB container) 47

D7.8 Integrated Platform - Final Version

Page vi Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 44: TyphonDL Creation Wizard: Further database configuration (MongoDB external database vs. MariaDB

Galera Cluster) .. 48
Figure 45: TyphonDL textual editor with syntax highlighting and auto completion .. 52
Figure 46: Generate Deployment Scripts .. 53
Figure 47: Creating a new Project .. 55
Figure 48: New QL project ... 55
Figure 49: QL Setup ... 56
Figure 50: Typhon QL options ... 57
Figure 51: Dump Schema results .. 58
Figure 52: Reset Polystore prompt ... 59
Figure 53: Insert query example ... 60
Figure 54: Results of select query ... 61
Figure 55: Use Inject to model to generate XMI file .. 81
Figure 56: Architecture of the continuous evolution tool ... 86
Figure 57: Main page of the visual analytics tool ... 87
Figure 58: Overview of the current schema configuration of the Polystore ... 88
Figure 59: Overview of the current size of the Polystore entities ... 89
Figure 60: Evolution of the entity size over time .. 89
Figure 61: CRUD operation distribution .. 90
Figure 62: Proportion of queried entities .. 90
Figure 63: CRUD operation distribution over time .. 91
Figure 64: TyphonQL queries monitoring .. 91
Figure 65: Query execution monitoring .. 92
Figure 66: Schema evolution recommendations ... 93
Figure 67: TyphonDL Creation Wizard .. 94
Figure 68: Containers of the Polystore Continuous Evolution component ... 95
Figure 69: Data ingestion process ... 97
Figure 70: Example input relational schema with four tables ... 99
Figure 71: Input schema extracted as three entities .. 99

TABLE OF ABBREVIATIONS

Abbreviations Detailed Factors

API Application Programming Interface

CI Continuous Integration

CI/CD Continuous Integration/Continuous Deployment

CRUD Create, Read, Update, Delete

CSS Cascading Style Sheets

DL, Typhon DL Definition Language, Typhon Definition Language

GUI Graphical User Interface

HTML Hyper Text Markup Language

ML, Typhon ML Modelling Language, Typhon Modelling Language

OCL Object Constraint Language

QL, Typhon QL Query Language, Typhon Query Language

SDK Software Development Kit

UI User Interface

URL Uniform Resource Locator

WP Work Package

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page vii

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable provides the final working software prototype synthesizing relevant technical

contributions and a technical report.

This report document describes the final implementation of the integrated platform and provides a

detailed architecture and life-cycle management description. Furthermore, it discusses details on

how users are allowed to design, deploy, query and evolve hybrid Polystores, via the platform‟s

Application Programming Interface (API) and its Graphical User Interface (GUI).

Additionally, it provides a clear representation of the various workflows naturally occurring for the

design, deployment and usage of the Polystore, along with the interactions between the various

components responsible.

This document continues with an installation and usage guide which is accompanied by the

appropriate screenshots and concludes with an outline of the work done and the requirements of the

platform, as expressed by the project‟s Use Case partners.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

The goal of the Integrated Platform work package (WP7) is to deliver a working software prototype

synthesizing relevant technical contributions from work packages 2 to 6, as well as a written report.

The final implementation of the integrated platform is based on a modern and robust architecture. It

fully supports the design, deployment, querying and evolution of hybrid Polystores, as described in

the previous work packages.

The integrated platform enhances its interoperability characteristics by enabling other systems and

applications to access its core functionality through an Application Programming Interface (API).

Hybrid Polystore users alternatively may access the platform and perform available tasks via a

Graphical User Interface (GUI), which is accessible by every device capable of running a web

browser. Additionally, some of the functionalities offered from the Polystore are available for

execution through relevant Eclipse plugins.

This report provides an architectural overview and outlines the implementation details of the

platform‟s core components and modules (including the API and the GUI), their orchestration and

deployment.

To support the integrated platform through its whole lifecycle, a Continuous Integration (CI) and

Deployment environment infrastructure has been designed and set-up. This document offers

detailed information on how each core component and the platform, as a whole, is handled by this

CI infrastructure in order to deliver stable products to end users and development teams.

The remainder of this document contains a detailed User Guide that explains the user actions

required to perform basic day-to-day tasks when using the Integrated Platform.

2. UPDATED PLATFORM ARCHITECTURE

2.1 COMPONENTS OVERVIEW

The Integrated Hybrid Polystore Platform consists of several independent components, which

coexist and cooperate to serve the platform‟s purposes. These components are the following: the

Polystore API, the Polystore UI, the Metadata Database, the Evolution components, the Query

Engine contained in the QL Server, the Analytics service and the actual Storage Databases, as

defined in the Typhon DL. Additionally, the Integrated Platform relies on the Modelling and

Definition Language components, which are available through Eclipse.

2.1.1 Typhon ML

The starting point of each Polystore is Typhon ML. Through ML, a user can model their desired

schemas and corresponding databases. This is done through an Eclipse installation with the

corresponding plugins available. It supports all basic data types, and classical SQL-like

relationships between entities. Additionally, ML offers the capabilities of producing visual schemas

based on the entities and their relationships. Finally, ML can also produce basic CRUD service

D7.8 Integrated Platform - Final Version

Page 2 Version 1.2 28 July 2020

Confidentiality: Public Distribution

implementations based on the entities modelled. Finally, ML supports a variety of database types,

such as Relational, Document, Graph and Key-Value backends.

2.1.2 Typhon DL

Following up ML, the Typhon DL component is used to create deployment scripts for the entities

and databases modelled. This component makes use of the ML file to generate additional

configuration files for databases and components. Various options are available to the user through

the DL wizard, such as making the databases public, changing the default credentials, an option to

use analytics and evolution components etc. The final step for the user is to generate the

deployment scripts based on the selections made previously, which will create deployment

configurations for all selected databases and containers for the various Polystore components.

2.1.3 Polystore API

The Polystore API component is responsible both for providing to external systems a variety of

endpoints serving the platform‟s core functionalities and for orchestrating the other components

within the Polystore accordingly. If the analytics component is used, it is responsible for populating

appropriate queues with incoming queries. It is also responsible for orchestrating the initialization

of the databases through the QL Server. It forwards authenticated Typhon QL queries to the QL

Server and prepares the responses containing the unified query results. Simple CRUD operations

for declared entities are also available through the API, using the QL Server. Moreover, it handles

all Metadata Database operations required for user management, model versioning etc. It is

implemented using the Java programming language and the Spring Enterprise Applications

Framework.

2.1.4 Polystore UI

The most user-friendly way to access and use the Hybrid Polystore platform is through the

Polystore User Interface. Technically, it is a web-based client for the Polystore API that allows

users to interact with the platform in a familiar way, using any device capable of connecting to the

Internet and running a web browser. The Polystore‟s UI Backend part is coded in Java using both

Spring Enterprise Applications Framework and the Polystore API component as well. For the

Frontend part, well-known web technologies have been used, such as CSS 3, HTML 5, Typescript

and Angular 8. The User Interface is used as an easy way to perform the various operations

supported by the API.

2.1.5 Metadata Database

The Metadata Database is used to store data related to Model versions, Model update history and

user management. For this purpose, the Hybrid Polystore Platform has adopted MongoDB, a

lightweight, cross-platform, document-oriented database which uses JSON-like documents for data

storage and offers functionality like indexing, multi-document ACID (Atomicity, Consistency,

Isolation, Durability) transactions, replication and load balancing. The Polystore API component

has access to the Metadata Database and handles all metadata related operations.

2.1.6 Evolution Toolset

Hybrid Polystore needs to evolve in response to changes to the business, technological or regulatory

requirements. Users apply evolutionary changes to their models at design time via the Typhon ML

and Typhon DL, which result in a new model version. The Evolution component is responsible for

propagating these changes via produced change operators to all the affected components that

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 3

Confidentiality: Public Distribution

operate inside the Integrated Polystore Platform. A standalone Java Archive file (JAR) contains the

Schema and data evolution/migration classes and resources, which can be used externally by a user

by providing the relevant configuration information (change operators, API connection information

etc.). When the tool receives new model changes via change operators, it uses the Query services of

the API to perform the required schema and data migrations to the Polystore Databases.

An additional part of the Evolution component is the Query Evolution Tool. This tool is packaged

as an Eclipse plugin, and similar to the schema/data evolution tool, it takes as input a model with

change operators to be applied to the schema and a list of QL queries. The tool process then evolves

these queries to be compatible with the new schema changes, while also classifying them as such. If

this is not possible for any of the queries, they are also classified as broken with a relevant comment

as to why they cannot be transformed.

Another tool offered by the Evolution toolset is the Evolution analytics tool, which makes use of the

analytics component to find potential performance issues stemming from the schema and produces

relevant recommendations (in the form of change operators) to the user. This analysis can be also

viewed through a Graphical Interface, which is coupled with the Evolution analytics tool.

Finally, a data ingestion tool is also included in the toolset, allowing users to ingest data into the

Polystore from relational databases. Details on installation, deployment and usage of this toolset can

be found in Section 6.3.6 of this document.

2.1.7 Typhon QL Server

The Query Language Server is one of the most critical components of the Hybrid Polystore. It

consists of a REST API service, which integrates the actual Query Engine, and is used by the

Polystore API and the Evolution components. The decision to move the Query Engine to a

dedicated REST API contained in a separate container was made in order to reduce

interdependencies and complexity of development, as using the Query Engine library directly

created a lot of overhead for the Polystore API. Additionally, by making the QL Server stateless,

the Polystore user can scale up specifically the querying capabilities of the Hybrid Polystore, as it is

a point that, under big data operations may come under heavy load.

The primary task of the QL Server (and the Query Engine) is to process query requests. Once a new

query is received, it‟s translated from the Hybrid Polystore query language, Typhon QL, into native

queries suitable for the various Database types that users define for their models at design time.

Then, the results derived from each different database backend are aggregated by the Query Engine,

which generates a uniform result representation, which is then returned as a standard HTTP

response.

2.1.8 Analytics Service

The Integrated Polystore Platform relies on the Analytics Service for authorization and query

statistics collection. It is deployed within the platform as a Java service that includes a message

broker based on Kafka
1
 and a real-time processing engine based on Flink

2
. The Polystore API

1
 See https://kafka.apache.org/

2
 See https://flink.apache.org/flink-architecture.html

https://kafka.apache.org/
https://flink.apache.org/flink-architecture.html

D7.8 Integrated Platform - Final Version

Page 4 Version 1.2 28 July 2020

Confidentiality: Public Distribution

communicates with the Analytics service only via the message broker. New query requests are

published to the “Pre” topic. After a series of validation and authorization checks are completed,

they are flagged as “authorized” or “unauthorized” and subsequently re-published to the “Auth”

topic, where the API is listening. After queries are executed, the Polystore API publishes the results

to the “Post” topic for analysing and calculating statistics. The Analytics service may also request

inverted queries, which then the Polystore API executes and attaches the result to the Post event

object. The number and the nature of the query statistics depend on the actual Analytics Service

implementation which may be different for each case of Integrated Polystore Platform deployment.

Developers are able to implement deployment-specific metrics and statistics by creating their own

Analytics service implementation. It must reference the base Analytics Java library that provides the

core functionality and enables cross-component communication via the messaging broker. The

usage of the analytics component is optional.

2.1.9 Storage Databases

Storage Databases are the places where actual data is persisted and retrieved. Their number, type

(relational, document-based etc.) and specific properties are not fixed, since they depend on

specifications set by the user, at design time, through Typhon DL. The instance types (Domain

Classes) for which a Storage Database is responsible for handling are defined at design time too,

using Typhon ML. Each storage Database is set-up inside an isolated container, which is generated

during the build process. The only component that directly connects to the Polystore Storage

Databases is the Query Engine. It is fully aware of all the characteristics defined at design-time and

is able to perform all the required operations to retrieve or store data from each different database

instance using the corresponding API. At the moment, Relational, Document, KeyValue and Graph

databases are supported by all the components of the Integrated Platform. Provisions and

placeholders also exist for Hive databases, but the underlying implementation in various

components is not yet completed.

3. WORKFLOWS

This section presents a high-level analysis of how the integrated components function as parts of the

underlying workflows that serve the platform‟s main tasks: Design, deployment and usage of the

Polystore. Figure 1 below shows the finalized interacting components and their position in the

overall architecture of the Polystore.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 5

Confidentiality: Public Distribution

Figure 1: Architecture of TYPHON Platform

3.1 DESIGN

The design task is not done on the Integrated Platform itself, but it is performed on an Eclipse

installation containing Typhon ML & DL plugins. The ML plugin is used to design the model to be

used and to indicate on which databases the classes created should be stored. The DL plugin is

responsible for deploying all necessary Polystore software, based on the ML model. Optional

software, such as the analytics component, is also included if the user wishes so. The end result of

the DL plugin operations are deployment scripts for the user‟s chosen platform.

3.2 DEPLOYMENT

The deployment process for the Polystore is initiated using the deployment scripts generated by

Typhon DL. These can include analytics and evolution components if the user indicated so during

the design phase. By default, Docker is used as virtualization tool. The resulting containers can be

deployed using Docker Compose, Docker Swarm or Kubernetes, which can be used to enable

horizontal scaling for stateless components, such as the API and the QL Server as well as the

replication of databases. Additionally, if the user indicates that they would like the deployed

backends to be accessible externally, the deployment process makes the databases public. Apart

from the backends, during the deployment process the various components needed by the Polystore,

such us the API, the UI, the metadata database and the QL Rest Server are also deployed (user can

optionally also configure deployment for analytics & evolution components). Furthermore,

D7.8 Integrated Platform - Final Version

Page 6 Version 1.2 28 July 2020

Confidentiality: Public Distribution

additional configurations can be made through the DL Creation Wizard to explicitly set allowed

resource usage. The deployment process is finalized as soon as all the containers are up & running.

3.3 RUNTIME

3.3.1 Query Execution

The main functionality offered by the runtime environment of the Polystore is query execution. A

Polystore query can be submitted in various ways. It may be directly submitted to the corresponding

Polystore API endpoint as a regular Http POST request containing relevant inputs (as seen in

Section 3.4.6), or through the Polystore UI, which undertakes the task to create the appropriate API

request and present the results. Additionally, a Swagger interface is available through the API,

which can also be used.

In all cases, the Polystore API receives the Query request and, if the analytics component is

available, forwards the Query to the analytics service for authorization (as seen in Section 2.1.8). If

authorization checks succeed, the API executes the query using the Typhon QL Rest server.

Queries, which are always written in Typhon QL, are processed by the Query Engine and results are

returned as a uniform Polystore response.

At this point, the Polystore API publishes the results to the “Post” topic of the Analytics

Component, so that an array of metrics and statistics is extracted, according to the needs of each

individual Polystore deployment.

Query results, except for being sent to the Analytics Component, are “packaged” in JSON format

and returned into a regular Http response, which is sent back to the initiator client to be consumed

accordingly. In case the initial query was submitted by the Polystore UI, it is received, parsed and

displayed to the user. If the Analytics component is not used, the received query is forwarded to the

QL server and executed regardless of authorization. Figure 2 below presents the full workflow of a

query originating on the Polystore UI and going through the Analytics component.

Figure 2: Query Execution Workflow

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 7

Confidentiality: Public Distribution

3.3.2 Evolution

Developers apply changes to their models in the Typhon Workbench, using Typhon ML and

Typhon DL and re-build their Typhon project. The latest ML model, containing the change

operators, and latest DL model, may then be used with the data/schema evolution tool for the

Evolution process to begin.

In case there are new Databases to be deployed at the platform, at the current state of the

implementation, an administrator user must manually execute the deployment scripts, as generated

based on the DL model, for the new Database containers/instances to be deployed.

For schema changes, the ML model containing the relevant change operators are processed by the

data/schema migration tool. It consumes the submitted change operators and performs all the

required changes to databases, schemas and data, using QL Queries through the relevant API

services. On each individual change, the resulting schema is uploaded automatically to the API. In

case of a migration failure, the latest attempted change is either rolled back or discarded. The user

can check the status of the evolution in the console where the tool is executed.

When the changes (migration) are completed, the final schema is uploaded to the Polystore API and

inserted to the metadata database. Additionally, the user can make changes to commonly used

queries to be in line with the newly evolved schema, using the query migration tool through

Eclipse.

Finally, using the Continuous Evolution tool, the user is able to get helpful performance statistics

about the Polystore schema and relevant queries, as well as recommendations about potential

changes that will improve performance. The workflow of the schema/data migration operations can

be found in Figure 3 below.

Figure 3: Evolution Workflow

D7.8 Integrated Platform - Final Version

Page 8 Version 1.2 28 July 2020

Confidentiality: Public Distribution

4. HYBRID POLYSTORE API & UI

The Hybrid Polystore Application Programming Interface (API) is one of the core components of

the Integrated Platform. The API provides centralized access to all user accessible functions of the

Polystore and acts as an orchestrator, essentially being the central connector between the

interconnected components.

The User Interface (UI) of the Hybrid Polystore was developed in order to provide easy access to

the Hybrid Polystore functionalities to users without them having to evoke any API calls. The UI

development is in tandem with the API development, ensuring that additional services and

capabilities added in the API are readily available through the UI.

The finalized versions of the Polystore API & UI are detailed in the sections below. Usage of the

functionalities mentioned is presented with examples on the User Guide in Section 6.

4.1 API SERVICES

4.1.1 User Services

Apart from the Polystore services, the API contains user services in order to enable authentication

across the Polystore. The users will be able to authenticate against the API and then have access to

the rest of the Polystore functionalities. The current endpoints that the API offers are:

 Register: register a new user

 List: get all the users of the Polystore

 Get: get specific user via username and list their respective attributes

 Delete: delete the specified user via username

4.1.2 Status Services

The API offers services designed to inform the end-user about the current status of the platform. By

querying the Status service, the response will indicate whether the Polystore is up or down.

Depending on the state of the Polystore, some functionalities could be temporarily unavailable. The

Polystore goes down when the manual Down service has been called externally by an authorized

user. In most cases, this would mean an authorized component calling the down service to perform

critical operations, such as the evolution component. Similarly, the Polystore will automatically

return to the Up state as soon as the critical operation finalizes, or if no operations are pending,

when an external user evokes the Up service. As a note, the actual container that the Polystore API

resides in is not affected, but rather functionalities are not allowed when the status is Down. In

short, the endpoints available for the Status services are the following:

 Up: brings the Polystore Up if no critical operations are pending

 Down: brings the Polystore down

 Status: returns the state of the Polystore

4.1.3 Model Services

In order for the API to act as an orchestrator, there is a need for it to manage the ML and DL

models, two of the most important building blocks of the Polystore, which are used by other

components to get connection details for databases in the case of DL, or get the schema details, in

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 9

Confidentiality: Public Distribution

the case of ML. The Model Services allow authorized users to download and upload both of these

models. As mentioned above, these models are stored in a metadata database. The API has a

versioning system in place for both of the models. These models are used by the QL Server for

database initialization. The endpoints for the Model Services are the following:

 Get DL: gets the latest DL model or the model matching the version input

 Set DL: uploads a new DL model

 Get ML: gets the latest ML model or the model matching the version input

 Set ML: uploads a new ML model

4.1.4 Query Services

The query service enables authorized users to send Typhon QL queries to the API for execution.

After a request has been made, the query is validated by the analytics component and if the query

passes authorization, it is forwarded to the Typhon Query Engine for execution. If the analytics

service is not available, all queries passed to the API will be executed. If the query is successful, the

API then returns the results to the end-user. The query endpoints are the following:

 Query: executes “select” queries

 Update: executes “update” and “insert” queries

 Prepared Update: executes batch “update” and “insert” queries

4.1.5 Backup/Restore Services

The backup and restore services are used by authorized users to manage data across all Typhon

Polystore databases. The backup service takes as input the database name and a desired backup

name and then uses native database clients to run the backup process on the selected database. The

resulting file is stored on the API server and the filename is returned to the user. The restore service

works in the same principle, as the input is the database name and the backup file name. After

making sure that the database/filename exists, the API evokes a native client for the specific

database type and runs a restore process based on the backup file. Additionally, the user can use the

download endpoint to download directly the backup file. In conclusion, the available endpoints for

the backup/restore services are:

 Backup: connects and backups database using native client

 Restore: connects and restores database using native client

 Download: used by user to download backup files

4.2 POLYSTORE UI

The Polystore UI has been designed for ease of use and supports all the functionality of the API

listed above. Users will be authorized against the User database of the API and after a successful

login, they will be able to access all relevant functions and status updates depending on their role.

The UI comes pre-packaged with the Hybrid Polystore as one of the main components. It was built

using popular web technologies and as such, is easily accessible from any device that supports a

D7.8 Integrated Platform - Final Version

Page 10 Version 1.2 28 July 2020

Confidentiality: Public Distribution

web browser. Implementations for all API operations have been made on the UI, and as such, it can

be used to perform any of the functions listed above through its graphical interface.

5. CONTINUOUS INTEGRATION & DEPLOYMENT PROCESS

To ensure fast, reliable and continuous delivery of the latest updates to teams involved in testing

and development of the Typhon service, a versatile and modern continuous integration and

deployment process based on Jenkins
3
 was designed and implemented.

During the second half of the project, the infrastructure was moved to a dedicated server in order to

be able to meet the computational and storage needs of the various components, while the

complexity, size and amount of build iterations were increased.

5.1 OVERVIEW

The whole procedure consists of 5 stages. Initially, a developer pushes changes to the master branch

of a Typhon component project. Our Continuous Integration Infrastructure detects these changes

and triggers a validation process, in order to confirm that everything works as expected without any

issues. When validation finishes, all appropriate users receive an automated email that informs them

about the validation result. The next action undertaken by the Continuous Integration Infrastructure

is to create new versions for each plugin, by building them using the updated source code. Finally,

the contents of the Eclipse update site are refreshed, so that the latest distributions become available

for download.

During the last half of the project, significant effort was made by technical partners to unify their CI

processes regarding Eclipse plugins & update sites. The result was a homogenous deployment

process and a unified Eclipse plugin repository, which significantly simplifies the installation

process (as seen in Section 6.1.3). As such, the Continuous Integration process for ML, DL, QL and

Evolution Eclipse plugins is very similar.

5.2 TYPHON ECLIPSE PLUGINS

When Continuous Integration infrastructure detects newly pushed code to the master branch of any

of the components of Typhon project, it pulls it immediately from the corresponding GitHub

repository. These projects are then built using Maven & Tycho
4
. Usually, this entails of building a

mavenized java parent project, which uses features bundles and modules to build their

subcomponents. One of these subcomponents is a p2 update site for the plugin. Proper functionality

is guaranteed by running a series of unit tests for each generated project. On a successful build, p2

update sites are deployed to the distribution folder.

3
 See https://jenkins.io/

4
 https://www.eclipse.org/tycho/

https://jenkins.io/
https://www.eclipse.org/tycho/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 11

Confidentiality: Public Distribution

Figure 4: Typhon DL CI Workflow

5.3 POLYSTORE API

A similar process takes place for the continuous integration purposes of the Polystore API

component. As soon as the CI infrastructure is notified for source code updates, it pulls it from the

repository and attempts to build the Polystore API through Maven. The API was modified to use

Google‟s Jib
5
, which allows Maven to also build and publish a Docker image based on the API

code and a custom built base Docker image, which contains an orchestration script (wait-for-it.sh
6
).

This orchestration script allows the API to wait for the Polystore Metadata database to be functional

before trying to connect to it, thus reducing errors and retry attempts.

In a successful Maven build, the “fresh” Docker image is pushed to its corresponding Docker Hub

repository. The Typhon DL deployment script is able to take delivery of the latest stable API

Docker image just by downloading it using the shared repository URL. In the previous release of

the Polystore API, it would also include and build the Polystore UI every time a code change was

detected. As this was adding additional complexity and load on the CI infrastructure, the UI was

removed from the build process of the API and was moved to a standalone repository with its own

CI/CD project, configuration and deployment process.

Figure 5: Polystore API CI Workflow

5.4 POLYSTORE UI

As mentioned previously, for the final release of the Integrated Platform, the Polystore UI build and

deployment process was separated from the API. The deployment process of the UI is based on a

Dockerfile, which the CI/CD infrastructure makes use of to create the corresponding image. The

Dockerfile contains instructions for the installation of the dependencies of the UI and the

commands required to execute the UI process. Changes were made to the base image and the

5
 https://cloud.google.com/java/getting-started/jib

6
 https://github.com/vishnubob/wait-for-it

https://cloud.google.com/java/getting-started/jib
https://github.com/vishnubob/wait-for-it

D7.8 Integrated Platform - Final Version

Page 12 Version 1.2 28 July 2020

Confidentiality: Public Distribution

dependencies used to make the image more lightweight, resulting in a size reduction of almost 800

MB.

5.5 EVOLUTION

The evolution toolset also makes heavy use of the CI/CD infrastructure to build its individual tools.

On a detected code change, the Jenkins Evolution project has been configured to build both

standalone tools (data/schema migration & data ingestion tools) as .jar files. On a successful build,

these standalone tools are deployed to a static folder residing in the main project repository,

publicly available for download.

Additionally, the build process also builds the Query evolution Eclipse plugin in a similar manner

to what was described in section 5.2, while also building Docker images for the Continuous

evolution tool The result of this process is, assuming a successful build, three Docker images

published to the public Docker repository. These images are (1) the Kafka consumer which captures

and analyses the QL queries on-the-fly, (2) the Typhon Evolution Analytics Client and (3) the

Typhon Evolution Analytics Backend, which can then be retrieved by the DL deployment scripts

for use in the Polystore.

5.6 TYPHON QL

The Typhon QL component, apart from the Eclipse plugin process mentioned earlier, also utilizes

Jib to build a Docker image for its REST server. As such, each time a code change is detected,

Jenkins is notified and begins the process as configured in a special file called Jenkinsfile. This file

allows for more advanced configuration via code rather than via the preset options allowed in the

GUI of Jenkins‟ configuration page. For the case of this component, the pipeline process checks out

the latest code from Github, builds the QL Eclipse plugin and the QL server and deploys them to

the unified update site and to the public Docker registry, respectively.

5.7 ARCHIVA REPOSITORY

An Apache Archiva
7
 repository was also created and hosted on the CI/CD infrastructure. This

repository is used to store various build artifacts and libraries stemming from the various

components. These artifacts are then used as Maven dependencies where needed. Additionally,

some commonly used dependencies across components are also hosted in this repository, allowing

us to have a centralized place for dependency resolution and versioning of component libraries.

5.8 DISTRIBUTION PROJECT

When the continuous integration and deployment process for one of the Typhon project components

– as mentioned above – finishes successfully, the Distribution Jenkins project is triggered. Its goal

is to build and deploy an updated Eclipse distribution ready to be downloaded via the unified

Eclipse Update Site. To achieve this goal, a new Eclipse Update Site, containing all the generated

plugins, is automatically created using a custom node.js script.

7
 https://archiva.apache.org/

https://archiva.apache.org/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 13

Confidentiality: Public Distribution

Figure 6: Distribution CI Workflow

5.9 GITHUB INTEGRATION

Projects for Typhon components use GitHub repositories for the storage and versioning purposes of

their source code. Our Continuous Integration infrastructure must be able to initiate the integration

and deployment processes for each project, as soon as any new source code is pushed to the master

branch of a project repository. This requirement is fulfilled thanks to the GitHub web-hooks. They

allow external services to be notified when certain events, related to a GitHub project, happen. In

this case, when a new commit is pushed to the master branch, our Continuous Integration

infrastructure receives a call to a specific endpoint and triggers the appropriate process. As soon as

this process finishes, the corresponding project readme files are updated so that they display the

latest build status of the project.

5.10 SLACK INTEGRATION

While not a critical part of the CI/CD infrastructure by any means, a Slack workspace was set up for

the needs of the project. This proved to be very useful, as it allowed us to have real time discussions

on integration, interdependency and other critical issues. Additionally, every build process

described in the Sections above notify specific Slack channels (for each component) of the status of

the build. These real time notifications were immensely useful for quick bug & problem resolution.

Finally, we also integrated GitHub issues for all component repositories with Slack as well, which

also enabled real time notifications on issue creation and comments.

For the remaining months of the project, use case partners were also given access to the Slack

workspace, allowing for more direct communication that will hopefully allow the technical partners

to quickly rectify any issues that might occur going forward.

D7.8 Integrated Platform - Final Version

Page 14 Version 1.2 28 July 2020

Confidentiality: Public Distribution

6. USER GUIDE

6.1 INSTALLATION

In the previous version of this guide, the installation of an Eclipse IDE Distribution, containing the

latest version of the required tools for Typhon development, could be done in two ways: either add-

ing a standalone distribution from the Typhon Eclipse Distribution Site or by downloading the offi-

cial Eclipse installer and manually installing the required tools. As various modules and dependen-

cies changed and became deprecated, for the latest working version it is safer to start from a clean

install of Eclipse and download all needed dependencies manually, as this process seems to pro-

duce less errors overall across users who tested it. As such, the standalone guidelines have been re-

moved from this version of the guide.

6.1.1 Installing Eclipse

The official Eclipse installer may be used to create a fresh Eclipse IDE installation. Typhon plugins

must be manually installed as described in this section. The benefit of this option is that plugin up-

dates are automatically detected and easily applied, without the need to reinstall a new standalone

distribution. If there is already an active Eclipse installation, Typhon plugins may be installed

through their corresponding Eclipse Update Site.

To download the installer visit the official download site (https://www.eclipse.org/downloads/)

Figure 7: Downloading Eclipse Installer

Once the download finishes, run the installer executable file and choose to install Eclipse IDE for

Java Developers.

https://www.eclipse.org/downloads/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 15

Confidentiality: Public Distribution

Figure 8: Installing Eclipse for Java Developers

Figure 9: Eclipse Installation

The next step is to install all the plugins required to start Typhon Development, through the Install

New Software option:

D7.8 Integrated Platform - Final Version

Page 16 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 10: Installing New Software to Eclipse IDE

6.1.2 Installing Docker

To deploy the Polystore to your machine, you will need to have Docker installed. You can get

Docker from here:

https://docs.docker.com/get-docker/

This installation will also include Docker Compose and the Docker Swarm mode. Tools for orches-

trating a Kubernetes deployment of the Polystore with kubectl can be downloaded here:

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Tools to run a Kubernetes cluster on your machine can be found here:

https://kubernetes.io/docs/tasks/tools/

6.1.3 Typhon Toolset

Install ML, DL, QL and Evolution Typhon plugins as shown in Figure 10 using the URL:

 http://typhon.clmsuk.com

The tools will automatically resolve and download any needed dependencies.

6.1.4 Optional Libraries

In order to use the graphical representation for the schema offed by ML, you will have to add Sirius

to your Eclipse installation. This can be done by using the update site URL below:

https://docs.docker.com/get-docker/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
http://typhon.clmsuk.com/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 17

Confidentiality: Public Distribution

http://download.eclipse.org/sirius/updates/releases/6.3.2/2019-06

Figure 11: Sirius Installation

6.2 USAGE

The following section describes the usage of the TYPHON toolset. It is assumed that user has al-

ready downloaded and installed the various tools and plugins needed as described in the previous

section.

6.2.1 Design Example

To start developing for Typhon, open the Eclipse IDE and Create a new project

http://download.eclipse.org/sirius/updates/releases/6.3.2/2019-06

D7.8 Integrated Platform - Final Version

Page 18 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 12: Creating new Java Project

Select Project under General wizard category and a project will be created. Alternatively, if you

want to use the graphical representation of the schema you will need to create a Sirius project (you

will have to install Sirius as per Section 6.1.4

Figure 13: Creating Project

Create a new Typhon ML file, give it a name and add the .tml extension.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 19

Confidentiality: Public Distribution

Figure 14: Creating TML file

After clicking Finish, you will be prompted to convert the file into an Xtext file. You will need to

click YES.

D7.8 Integrated Platform - Final Version

Page 20 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 15: Xtext project prompt

6.2.1.1 Simple Example of Usage

A very simple model, consisting of two classes, will be used for the rest of this Quick Start Guide.

There is a Product class with id and name properties that has a zero to many relationship with the

Review class. A relational database stores product records and a document database stores the re-

views. To create this model, edit the contents of the .tml file you have just created and enter the fol-

lowing code:

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 21

Confidentiality: Public Distribution

Figure 16: Simple ML example

To transform this ML code into a model, right click on the .tml file, and select Typhon -> Inject to

model. This will generate a visual representation of the model classes and their relationships, creat-

ing an xmi file containing model data.

D7.8 Integrated Platform - Final Version

Page 22 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 17: Creating XMI file from TML

If you opted to create a Sirius project, to visually inspect the model, open the generated repre-

sentations.aird file, select typhonML as representation and click New…

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 23

Confidentiality: Public Distribution

Figure 18: Creating Visual Model Representation

The visual model representation should look like this:

Figure 19: Visual Model Representation

D7.8 Integrated Platform - Final Version

Page 24 Version 1.2 28 July 2020

Confidentiality: Public Distribution

At this point, the class design has finished and you may proceed to create the Typhon DL model. To

do so, right click on the generated .xmi file and select TyphonDL -> Create Typhon DL Model.

Figure 20: Creating TDL file

You can then follow the instructions on the DL wizard to complete the deployment script genera-

tion. For the sake of simplicity, for this example we chose docker-compose as our deployment

method.

After the DL wizard is finalized, the next step is the creation the deployment scripts based on the

Typhon DL. Right click on TyphonDL model file (.tdl) with the name that was given in the wizard

file and Select Typhon DL -> Generate Deployment Scripts.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 25

Confidentiality: Public Distribution

Figure 21: Generating Deployment Scripts

This action will add a folder containing a model.xmi and a docker-compose yaml.

Figure 22: Sample Project files after model XMI file generation

For details concerning the use and capabilities of the DL module, you can read Section 6.3.2.

6.2.1.2 Launching of Polystore

To finalize this example, the docker compose file must be built and deployed. To do so, go to the

folder where it has been generated, open a terminal/powershell window and type:

docker-compose up --build

D7.8 Integrated Platform - Final Version

Page 26 Version 1.2 28 July 2020

Confidentiality: Public Distribution

to start it. You can stop the running Polystore instance by pressing Ctrl + C. After this, to safely re-

move everything you can do

docker-compose down

and

docker-compose rm -v

This will remove all containers and volumes allowing the Polystore to be correctly recreated the

next time. For different deployment methods, you can read Section 6.3.2.5.

6.2.2 Runtime Example

6.2.2.1 Polystore UI

A short while after performing the aforementioned Docker commands, the Polystore will be

available. You will now be able to open a browser and navigate to the Polystore UI web application,

which is locally available at http://localhost:4200

You can login with the default credentials, which are:

Username: admin

Password: admin1@

Figure 23: Polystore UI Login Page

http://localhost:4200/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 27

Confidentiality: Public Distribution

Polystore users may be added or removed through the Manage users page.

Figure 24: Polystore UI Manage Users Page

To upload the generated Typhon DL and Typhon ML xmi files, go to the Models page and click the

Upload new version button under each section. By default, the first version of both DL & ML .xmi

models are uploaded during initialization of the containers.

D7.8 Integrated Platform - Final Version

Page 28 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 25: Polystore UI Models Page

Once xmi files have been successfully uploaded, new model version entries will be displayed.

The next step for Polystore usage is to initialize the databases and perform queries. To do this, you

either use the UI (next section) or you can skip ahead to Section 6.3.4.6 to perform these operations

through the API, or if you wish to perform these through Eclipse you can skip to Section 6.3.3.

The first step to querying the Polystore is to initialize the databases. This can be done through the

Query menu.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 29

Confidentiality: Public Distribution

Figure 26: Query Menu

To initialize the databases, you can press the Reset Databases button. After a short while, you will

get a 200 OK message, indicating that the databases have been initialized and are ready to use.

You can then use the Select, Update/Insert, or Batch windows to execute corresponding queries. For

more information about the inputs needed, you can read Section 6.3.4.6 and section 6.3.5.

6.3 COMPONENT DOCUMENTATION

The extensive documentation in this section will be updated per component online in their

respective README pages.

6.3.1 Typhon Modelling Language (ML)

To start a TyphonML model specification, we need to create a new modelling project within a .tml

file. The TyphonML editor supports the modeller with the following facilities:

 Syntax Highlighting,

 Background Validation,

 Error Markers,

 Content Assist,

D7.8 Integrated Platform - Final Version

Page 30 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 Hyperlinking, and

 Quick fixes.

In the rest of this section we describe each part of the TyphonML language. In particular, the

TyphonML specification consists of 4 main blocks as depicted in Figure 27:

 Custom data types,

 Entities,

 Databases and

 Change operators.

Figure 27: TyphonML overview

6.3.1.1 Custom data type

Custom data types allow the modeler to define their data types.

It extends the abstract DataType metaclass in order to enable the specification of custom data types.

To this end, each CustomDataType instance consists of different elements, which overall contribute

the definition of the new data type being defined. For instance, in order to represent geographical

points of interest, users can define an address type consisting of four DataTypeItem elements, i.e.,

street, city, location, and zipcode. Such data items would be of primitive types (e.g., string) or

custom data types (e.g., zip). A custom data type consists of primitive and custom type elements as

depicted in Figure 28 where address includes of 3 primitive types, i.e., street, city, and location, and

the zipcode custom datatype. Each element is represented by the name, colons and type.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 31

Confidentiality: Public Distribution

Figure 28: Custom data types

6.3.1.2 Entity

The conceptual entities have a name and consist of attributes and relations. Attribute is a named el-

ement, which is defined in terms of the type of elements to be represented. An attribute can be typed

as a primitive, or an custom type. The attributes are defined by the name, colons and type that

can be primitive or custom data types. We report the complete list of primitive data types in the

following:

 Int,

 bigint,

 string: this datatype allows to specify the strin max size as parameter (see line 21 of Figure

29),

 text,

 point,

 polygon,

 bool,

 float,

 blob,

 date,

 datetime, and

 text: this primitive data type can be decorated with NLP tasks (see line 22 of Figure 29).

The complete list of NLP tasks is reported in the following:

o ParagraphSegmentation,

o SentenceSegmentation,

o Tokenisation,

o PhraseExtractor,

D7.8 Integrated Platform - Final Version

Page 32 Version 1.2 28 July 2020

Confidentiality: Public Distribution

o NGramExtractor,

o POSTagging,

o Lemmatisation,

o Stemming,

o DependencyParsing,

o Chunking,

o SentimentAnalysis,

o TextClassification,

o TopicModelling,

o TermExtraction,

o NamedEntityRecognition,

o RelationExtraction, and

o CoreferenceResolution.

Relation is a named element, which permits to specify relationships between different entities. In

particular, the structural features of such modeling constructs are the following:

 type: it permits to define the type of the relationship being specified;

 cardinality: entities can be involved in relationships of different cardinalities, which can be

singular or multiple;

 opposite: when creating a reference from one entity (e.g., named e1) to a second entity (e.g.,

named e2) it is possible to specify the opposite reference from e2 to e1 in order to define a

bidirectional relation instead of two different unidirectional ones.

 isContainment: it is a boolean attribute, which permits to specify if the target entity is

contained (e.g., to trigger cascade-deletion) or not in the entity being modeled.

The relations are represented by the name, the keyword ->, the linked entity, and the cardinality,

which can be either 0..1, 1, 0..*, and * (see line 27 of Figure 29). A containment relation is

represented as colons before the -> keyword (see line 28 of Figure 29), whereas a bidirectional

relation is defined with its opposite relation (see line 26 of Figure 29). Containment and

bidirectional relations can occur together as shown in line 30 of Figure 29.

Figure 29: Conceptual entity

6.3.1.3 Databases

Currently, TyphonML supports four kinds of database systems, i.e., relational DB, graph DB, doc-

umental DB, and key-value DB. We report the syntax of each supported DB system in the follow-

ing.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 33

Confidentiality: Public Distribution

Figure 30 depicts an instance of relational DB. It consists of a name (line 70) and tables (lines 71-

80). A table maps a conceptual entity (line 73) and allows specifying indexes (lines 74-76) and ids

(line 79). The editor accepts and suggests only attributes specified in the mapped entity (line 75) as

possible indexes ones or id (line 77).

Figure 30: Relational DB

Figure 31 depicts an instance of document DB that consists of a name (line 87) and a list of collec-

tions (lines 88-92), where each one maps a conceptual entity (line 89).

Figure 31: Document DB

An instance of Graph DB specification is depicted in lines 70-82 of Figure 32, where two entities

i.e., Wish and Concordance, are mapped as graph edges. It worth noting that only entities with more

than two one-to-one relations can be used as edge, and only a one-to-one relationship can be used as

a source or a target. In this way, the editor can detect possible edge mapping errors. For instance,

lines 73-76 in Figure 32 notify an error because the edge points to the Wish entity that consists of a

single one-to-one relation.

D7.8 Integrated Platform - Final Version

Page 34 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 32: Graph DB

Figure 33 depicts an instance of Key-value DB that consists of a name (line 82) and a list of ele-

ments (lines 88-92), where each one represents a key-value structure. Each element consists of a

name (User in line 84), the key name (userKey) and a list of entities‟ attributes (User.photoURL and

User.avatarURL) that the key-value structure maps.

Figure 33: Key-Value DB

6.3.1.4 Change operators by example

This section presents the syntax of change operators to support the evolution workpackage. A

change operator can be applied on entities, relations, attributes, databases and custom data types.

For more details see Section 6.3.6.1. We recap all the operators in the following. Moreover, Figure

34 depicts all the change operators at work.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 35

Confidentiality: Public Distribution

Figure 34: Change operators

Within entity we can apply the following change operators:

 Rename Entity (line 124),

 Remove Entity (line 125),

 Split Entity Vertical (line 126),

 Split Entity Horizontal (line 127),

 Migrate Entity (line 128),

 Merge Entity (lines 129), and

 Add Entity (lines 130-137).

Within entity we can apply the following change operators:

 Add Relation (line 140),

 Rename Relation (line 141)

D7.8 Integrated Platform - Final Version

Page 36 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 Remove Relation (line 142),

 Enable Relation Containment (line 143),

 Disable Relation Containment (line 144), and

 Change Relation Cardinality (line 145).

Within attribute we can apply the following change operators:

 Add Custom Data Type Attribute (line 148),

 Add Primitive Data Type Attribute (line 149),

 Remove Attribute (line 150),

 Rename Attribute (line 151),

 Change Primitive Data Type Attribute (line 152), and

 Change Custom Data Type Attribute (line 153).

Within database elements we can apply the following change operators:

 Rename Table (line 156),

 Add Index (line 157),

 Drop Index (line 158),

 Add Attributes to Index (line 159),

 Remove Attributes to Index (line 160),

 Rename Collection (line 161),

 Add Collection Index (line 162), and

 Drop Collection Index (line 163).

Finally we provide a construct to add Custom Data Type (line 166).

6.3.1.5 Graphical editor

The TyphonML graphical editor has been developed by means of Sirius
8
. Sirius is an Eclipse

project that enables the development of graphical modelling environments by leveraging well-

8
 https://www.eclipse.org/sirius/

https://www.eclipse.org/sirius/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 37

Confidentiality: Public Distribution

established technologies. Starting from a metamodel, it allows a model-based specification of visual

concrete syntax organized in viewpoints(pointed with3), i.e., models that can be authored by means

of different notations that suit the needs of various stakeholders. Figure 35 depicts an instance of

TyphonML model defined by the graphical editor. The palette, in the right of Figure 35, allows the

modeller to add the TyphonML elements to the canvas in the left part.

Section 6.2.1 describes how to open a TyphonML models by the graphical editor. Thanks to the

Sirius and Xtext
9
 integration, graphical and textual editors are both synchronized. In this way,

stakeholders with different skills can define TyphonML models using different syntaxes.

Figure 35: Graphical editor

6.3.1.6 Generation of the OpenAPI specification

In this section, we describe how the OpenAPI
10

 specification is generated from the TyphonML

model. In particular, it is a specification for describing, consuming, and visualizing RESTful web

9
 https://www.eclipse.org/Xtext/

10
 https://www.openapis.org/

https://www.eclipse.org/Xtext/
https://www.openapis.org/

D7.8 Integrated Platform - Final Version

Page 38 Version 1.2 28 July 2020

Confidentiality: Public Distribution

services which allows both humans and machines to discover and understand the provided services.

An OpenAPI definition can be used for many purposes, e.g., documentation, generation of clients in

various programming languages, displaying APIs as a web UI, testing, and many other use cases.

Once the TyphonML specification is completed, a synthesis tool is applied to generate the

corresponding OpenAPI specification by a set of coordinated Acceleo-based model-to-code

transformations
11

.

In The contextual menu (see

Figure 36) allows the modeler to produce the OpenAPI specification of a given TyphonML model.

Then, she can use it to directly generate clients in various programming languages that

programmatically interact with the Polystore resources. In Figure 37, we report an excerpt of the

OpenAPI specification generated from a simple eCommerce TyphonML model.

Figure 36: OpenAPI generation

11

 https://www.eclipse.org/acceleo/

https://www.eclipse.org/acceleo/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 39

Confidentiality: Public Distribution

Figure 37: An instance of generated OpenAPI specification

6.3.2 Typhon Deployment Language (DL)

In this section the usage of the TyphonDL modelling tools including script generation is presented.

After creating a TyphonML model with the help of the TyphonML modelling tools a TyphonDL

model can be created with the help of the TyphonDL Wizard (see 3.2.3) from the ML model. The

wizard uses the previously defined (default or use-case specific) templates (see 6.3.2.2) and creates

a TyphonDL model file and additional model files for every database that can be edited with the

textual and/or graphical editor (see 6.3.2.4). When the DL model is ready, the TyphonDL Script

D7.8 Integrated Platform - Final Version

Page 40 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Generator can be used to generate technology dependent deployment scripts (see 6.3.2.5). Before

the tools are explained, an overview over the Typhon Deployment Language is given in 6.3.2.1.

6.3.2.1 Typhon Deployment Language

This section introduces the metamodel that formalises the concepts that constitute the language

primitives of TyphonDL. Meta-classes described below are presented using the font as in font:

DeploymentModel represents the root container of each TyphonDL specification and consists of

two distinct elements:

 MetaModel: It represents the set of operators on TyphonDL models.

 Model: It represents the set of concepts that will be used in a TyphonDL model.

These elements are further defined as follows:

MetaModel consists of the import operation that allows a TyphonDL model to include the contents

of another TyphonDL model.

Model consists of the following classes that categorise the components of a TyphonDL model:

 Type: It represents the collection of all types that are used in a TyphonDL model.

 Services represents the collection of deployable software services.

 Platform represents the logical units in a deployment environment.

Type consists of the following types:

 PlatformType represents the set of different types of platforms that can be used in

a deployment task in the cloud. Example platform types are the Amazon Web

Services cloud services platform, Microsoft Azure, Google Cloud etc.

 ClusterType represents the set of different types of schemes to govern over a

cluster of containers.

 ContainerType represents the set of different types of containerisation software

that can be used in a deployment task. Example container types are Docker, rkt,

VirtualBox, VMWare, etc.

 DBType represents the collection of different database management systems such as

MariaDB, MongoDB, Neo4j, Cassandra, etc.

Services distinguish between of database services DB and all other software services Software.

TL;DR

1. Create TyphonDL model (right click on MLmodel.xmi -> Create TyphonDL Model)

2. Create Deployment Scripts (right click on DLmodel.tdl -> Generate Deployment Scripts)

3. Run polystore

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 41

Confidentiality: Public Distribution

 Database services DB are named elements typed by a database type defined by

DBType.

 Software is a named element and consists of a list of configuration parameters

including image, URI, environment and properties.

Platform is a named element and typed by a platform type defined by PlatformType. It permits

to model an individual platform space on a specific platform provider. It consists of a list of cluster

declarations.

Cluster is a named element and typed by a cluster type defined by ClusterType. It consists of a

list of application declarations.

Application is a named element that represents a software-based application that is possibly

composed of several smaller software components that are deployed in individual containers.

Container is a named element that is typed by a container type defined by ContainerType. It

represents a container or a virtual machine and consists of a list of configuration elements that are

part of the TyhonDL metamodel or other container specific properties that are defined by

Property.

Configuration elements consist of a set of pre-selected standard deployment configuration

parameters. These parameters are the following ones.

 Image: The image that contains a set of instructions for creating a container.

 HelmList: The list of specifications to use Helm charts
12

 to define the setup

configuration of database deployments. In particular, the name of the Helm chart,

the repository name and the repository address of the respective Helm chart are

specified.

 Environment: The environment parameters used in the setup configuration of

database deployments.

 Credentials: The credentials to be defined in the setup configuration of

database deployments.

 URI: The URI for a database or a container through which they are accessed by

Typhon

 deploys: The link between a service specification and the respective container it

is deployed in.

 depends_on: The dependency relation between two containers.

 Networks: The network parameters to which a container is part of are specified.

 Ports: The parameters that publish a container to be reachable outside of a

Polystore network are specified. These parameters are typically a target port for

12

 www.helm.sh/docs/topics/charts/

http://www.helm.sh/docs/topics/charts/

D7.8 Integrated Platform - Final Version

Page 42 Version 1.2 28 July 2020

Confidentiality: Public Distribution

the container, and a published port that makes the container available outside of

the Polystore.

 Resources: The parameters that control or limit the resources allocated to a

container, such as CPU and memory.

 Replication: The parameters to define replicated instances of a container based

on a specific replication mode including multi-primary, replica set with a

primary/source and n replicas, and stateless replication.

 Volumes: The mount parameters for the directories in a container to save data or

share data between containers. The parameters are the volume name, the mount

path, the volume type and any other technology specific parameters for a volume.

Property is a set of three different kinds of configuration declarations in the form of:

 Key-value pairs (Key_Values),

 key and array of values (Key_ValueArray),

 list of key-value pairs (Key_KeyValueList)

and permit to represent any other configuration properties that are specific to

individual containerisation technologies.

6.3.2.2 TyphonDL Templates

The TyphonDL plugin comes with a set of default DB and DBType templates, that can be viewed,

imported, exported and edited in Eclipse → Window → Preferences → TyphonDL → Templates

(see Figure 38). Here, additional templates can be added, or company specific DB settings can be

defined and used for creating a new Polystore deployment.

Figure 38: TyphonDL DB Template preferences

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 43

Confidentiality: Public Distribution

The default DB Templates include:

 MariaDB with DBType MariaDB
13

 containing Credentials with username =

root and a password to be set by the user.

 Mongo with DBType Mongo
14

 containing Credentials with username and

password to be set by the user.

 Cassandra with DBType Cassandra
15

 containing an Environment to set the

maximum heap size and the amount of heap memory allocated to newer

objects
16

.

 Neo4j with DBType Neo4j
17

 containing Credentials with username = neo4j

and a password to be set by the user.

 HelmMariaDB with DBType MariaDB containing a HelmList using

bitnami/mariadb
18

 and Credentials with username = root and a password to

be set by the user.

 HelmMariaDBGalera with DBType mariadbgalera containing a HelmList

using bitnami/mariadb-galera
19

 and Credentials with username = root and a

password to be set by the user.

 HelmMongo with DBType Mongo containing a HelmList using

bitnami/mongodb
20

 and Credentials with username=root and a password to

be set by the user.

 HelmMongoSharded with DBType mongoshareded containing a HelmList

using bitnami/mongodb-sharded
21

 and Credentials with username=root and

a password to be set by the user.

 HelmCassandra containing a HelmList using bitnami/cassandra
22

 and

Credentials with username and password to be set by the user.

 HelmNeo4j containing a HelmList using neo4j-helm
23

 and Credentials with

username=neo4j and a password to be set by the user.

13

 https://hub.docker.com/_/mariadb
14

 https://hub.docker.com/_/mongo
15

 https://hub.docker.com/_/cassandra
16

 https://docs.datastax.com/en/ddac/doc/datastax_enterprise/operations/opsConHeapSize.html
17

 https://hub.docker.com/_/neo4j
18

 https://github.com/bitnami/charts/tree/master/bitnami/mariadb
19

 https://hub.helm.sh/charts/bitnami/mariadb-galera
20

 https://github.com/bitnami/charts/tree/master/bitnami/mongodb
21

 https://hub.helm.sh/charts/bitnami/mongodb-sharded
22

 https://hub.helm.sh/charts/bitnami/cassandra

https://hub.docker.com/_/mariadb
https://hub.docker.com/_/mongo
https://hub.docker.com/_/cassandra
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/operations/opsConHeapSize.html
https://hub.docker.com/_/neo4j
https://github.com/bitnami/charts/tree/master/bitnami/mariadb
https://hub.helm.sh/charts/bitnami/mariadb-galera
https://github.com/bitnami/charts/tree/master/bitnami/mongodb
https://hub.helm.sh/charts/bitnami/mongodb-sharded
https://hub.helm.sh/charts/bitnami/cassandra

D7.8 Integrated Platform - Final Version

Page 44 Version 1.2 28 July 2020

Confidentiality: Public Distribution

6.3.2.3 TyphonDL Wizard

To create a TyphonDL model from a TyphonML model the TyphonDL Wizard has to be started by

selecting the given ML model and selecting Create TyphonDL model in the Typhon context menu

(see Figure 39: TyphonDL Creation Wizard).

Figure 39: TyphonDL Creation Wizard

On the first page of the wizard (see Figure 40) the name for the TyphonDL model has to be entered

and a deployment technology such as Docker Compose, or Kubernetes has to be chosen from a

dropdown menu. The selected technology will be included in the model in the form of

Clustertype which is used when defining a Cluster:

 clustertype DockerCompose

 cluster clusterName: DockerCompose …

The Analytics component (see 2.1.8) can be activated and deployment scripts can be created to

either run it alongside the other Polystore components, or to run it on a different machine. If run

alongside the other Polystore components, the Typhon Continuous Evolution component can also

be activated. An already running Analytics component can also be added to the model by giving its

URI. The URI for reaching the Analytics container can only be defined here. If it were to change at

a later point, the DL model would have to be recreated with the Creation Wizard. For the UI to be

reachable by the API, the API URI (consisting of host and port) has to be given to the Wizard. If

Swarm Mode or Kubernetes is used, it is possible to scale the stateless parts of the Polystore, i.e. the

API and the QL server.

23

 https://github.com/neo4j-contrib/neo4j-helm

https://github.com/neo4j-contrib/neo4j-helm

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 45

Confidentiality: Public Distribution

Figure 40: TyphonDL Creation Wizard: Page one

If the Analytics component is to be generated, an optional page (see Figure 41) appears after the

first one. Here, the Analytics component can be configured.

Figure 41: TyphonDL Creation Wizard: Configuring the Analytics component Docker Compose vs. Kubernetes)

D7.8 Integrated Platform - Final Version

Page 46 Version 1.2 28 July 2020

Confidentiality: Public Distribution

TyphonML provides an XMI representation of the ML model that is parsed by the TyphonDL

Wizard and that filters out the databases to be deployed by TyphonDL. For each database the

second page of the wizard (see Figure 42) provides the possibility to choose one of the following

options:

1. Use a pre-existing DB model file
24

 if a file with the name <databasename>.tdl

exists in the project folder.

2. Create a new DB model object by choosing a template (shown in 6.3.2.2) from

the drop down menu.

3. Use an existing externally running database. A DB model object with the flag

external, an URI and the DBType of the selected template is created.

4. If Kubernetes is chosen on the first page, the option to use a Helm Chart
25

 is

added. Here, one of the templates already containing a HelmList should be

chosen, their names all start with “Helm”. Otherwise a new default HelmList

using bitnami
26

 as Helm Repo is created.

In each of the above cases, the resulting DB model object is cached in the Creation Wizard for

further configuration on the next pages.

Figure 42: TyphonDL Creation Wizard: Choosing the DBMS for each database (Docker Compose vs. Kubernetes)

24

 (examples in Listing 3, Listing 4 and Listing 5)
25

 https://hub.helm.sh/
26

 https://bitnami.com/stacks/helm

https://hub.helm.sh/
https://bitnami.com/stacks/helm

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 47

Confidentiality: Public Distribution

In Figure 43 two example DB configurations are shown. If the DB is not set to external, a

Container model object for each database is created and cached together with the DB object in the

Wizard. The Container gets an URI object with the value <containerName>:<containerPort>.

This URI is parsed by the API to know where to reach each database.

Figure 43: TyphonDL Creation Wizard: Further database configuration (MariaDB container vs. MongoDB container)

On the left side of Figure 43 database settings for VehicleMetadataDB are presented. The

previously chosen DBType is shown on the top of the page – here MariaDB (compare to Figure 42).

The template (see Figure 38) has a given username (root) and only allows to choose the password.

The Wizard provides the possibility to generate a 16 digit password containing small and capital

letters and numbers. If a different image version should be used, it can be defined in the “Image

used” group. Next, container resources can be defined by checking the respective checkboxes. This

will add a Resources object to the Container. CPU is measured in CPU units, given as the

fragment of available processing time (0.2 = 20%). Memory is measured in bytes and is expressed

as integer using one of these suffixes: T, G, M, K. It‟s possible - though not recommended in

production - to publish a database container with a given “Published Port” in the “Ports” group.

This will add a Ports object to the Container.

D7.8 Integrated Platform - Final Version

Page 48 Version 1.2 28 July 2020

Confidentiality: Public Distribution

On the left side of Figure 43, the MongoDB TextWarningData can be configured. Here, both

username and password can be chosen. Additionally, to the options above, it‟s allowed to replicate

the MongoDB
27

 if Docker Compose is used. If the Primary/Secondary option is chosen, a

Replication object is added to the Container. The number of total Replicas denotes the

number of additionally created containers.

On the left side of Figure 44, the database settings for VehicleDataDB, an external MongoDB

(compare with the checkbox in Figure 42:left) are presented. Additionally, to setting the

Credentials, the user has to give an URI pointing to the database in the “Database Address”

group.

An example for using Helm charts in the DB AppData (compare with the checkbox in Figure

42:right) is given on the right side of Figure 44. The template for MariaDB Galera (see 6.3.2.2)

already contains the repository settings. The user can specify the use of a custom values file. If the

valuesFile field contains the repository name (here “bitnami”), the default values provided by the

chart are taken
28

.

Figure 44: TyphonDL Creation Wizard: Further database configuration (MongoDB external database vs. MariaDB

Galera Cluster)

When the wizard is finished, the following TyphonDL files get added to the project:

 TyphonDL model file with the name that was given in the wizard (examples in

Listing 1 using Docker Compose and Listing 2 using Kubernetes).

 Properties file needed to generate deployment scripts.

 One model file for each database (examples in Listing 3, Listing 4 and Listing

5).

27

 https://docs.mongodb.com/manual/replication/
28

 E.g. https://github.com/bitnami/charts/blob/master/bitnami/mariadb-galera/values.yaml

https://docs.mongodb.com/manual/replication/
https://github.com/bitnami/charts/blob/master/bitnami/mariadb-galera/values.yaml

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 49

Confidentiality: Public Distribution

 One model file containing the DBTypes (example in Listing 6).

import weatherModel.xmi
import VehicleMetadataDB.tdl
import AppData.tdl
import TextWarningData.tdl
import VehicleDataDB.tdl
import dbTypes.tdl
containertype Docker
clustertype DockerCompose
platformtype localhost
platform platformName : localhost {
 cluster clusterName : DockerCompose {
 application Polystore {
 container vehiclemetadatadb : Docker {
 deploys VehicleMetadataDB
 ports {
 target = 3306 ;
 published = 35201 ;
 }
 resources {
 limitCPU = 0.5 ;
 limitMemory = 512M ;
 reservationCPU = 0.25 ;
 reservationMemory = 256M ;
 }
 uri = vehiclemetadatadb:3306 ;
 }
 container appdata : Docker {
 deploys AppData
 uri = appdata:3306 ;
 }
 container textwarningdata : Docker {
 deploys TextWarningData
 uri = textwarningdata:27017 ;
 replication {
 replicas = 3 ;
 mode = replicaSet ;
 }
 }
 }
 }
}
Listing 1: Main model file deploymentModel.tdl generated by the TyphonDL Creation Wizard using Docker Compose

D7.8 Integrated Platform - Final Version

Page 50 Version 1.2 28 July 2020

Confidentiality: Public Distribution

import weatherModel.xmi
import AppData.tdl
import TextWarningData.tdl
import VehicleMetadataDB.tdl
import VehicleDataDB.tdl
import dbTypes.tdl
containertype Docker
clustertype Kubernetes
platformtype minikube
platform platformName : minikube {
 cluster clusterName : Kubernetes {
 application Polystore {
 container appdata : Docker {
 deploys AppData
 uri = appdata:3306 ;
 }
 container textwarningdata : Docker {
 deploys TextWarningData
 uri = textwarningdata:27017 ;
 }
 container vehiclemetadatadb : Docker {
 deploys VehicleMetadataDB
 ports {
 target = 3306 ;
 published = 3306 ;
 }
 resources {
 limitCPU = 0.5 ;
 limitMemory = 512M ;
 reservationCPU = 0.25 ;
 reservationMemory = 256M ;
 }
 uri = vehiclemetadatadb:3306 ;
 }
 }
 }
}

Listing 2: Main model file deploymentModel.tdl generated by the TyphonDL Creation Wizard using Kubernetes

database AppData : MariaDB {
 credentials {
 username = root ;
 password = zRcUgpmgcBmZuSSI ;
 }
}

Listing 3: AppData.tdl containing the password created in the Wizard

external database VehicleDataDB : Mongo {
 uri = https://example.com:32384 ;
 credentials {
 username = mainUser ;
 password = yG7w4djhIg1F2ZI3 ;
 }
}

Listing 4: VehicleDataDB.tdl is an external database which is not deployed by a container in the main model file

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 51

Confidentiality: Public Distribution

database AppData : mariadbgalera {
 helm {
 repoName = bitnami ;
 repoAddress = https://charts.bitnami.com/bitnami ;
 chartName = mariadb-galera ;
 valuesFile = appdata/values.yaml ;
 }
 credentials {
 username = root ;
 password = ell8qy43MvnwxFEa ;
 }
}

Listing 5: AppData.tdl when using a Helm Chart and giving a custom values file

dbtype MariaDB {
 default image = mariadb:latest;
}
dbtype Mongo {
 default image = mongo:latest;
}

dbtype mariadbgalera {
 default image = bitnami/mariadb-galera;
}

Listing 6: dbtypes.tdl

6.3.2.4 TyphonDL Editor

Xtext provides a textual editor with syntax highlighting, auto completion and an outline view. If the

project that includes the models does not hold an Xtext nature, the TyphonDL Creation Wizard

automatically adds it to the project. Linking between files (shown in Figure 45) is provided by

Xtext.

The TyphonDL Creation Wizard already creates a valid TyphonDL model, comprehensive enough

to generate Polystore deployment scripts, but the user can still add additional information. When

Kubernetes is chosen, the Platformtype is automatically set to “minikube
29

”, a testing

environment. A different Platform Type can easily be used by changing the value of

Platformtype and adding a “kubeconfig” Key_Values to the Cluster. The “kubeconfig” file can

be downloaded from the cluster provider. An example for using AWS is shown in Listing 7.

platformtype AWS
platform platformName : AWS {
 cluster clusterName : Kubernetes {
 kubeconfig = /path/to/downloaded/kubeconfig.yaml;

Listing 7: Changing the Platformtype and providing a kubeconfig file

29

 https://kubernetes.io/docs/setup/learning-environment/minikube/

D7.8 Integrated Platform - Final Version

Page 52 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 45: TyphonDL textual editor with syntax highlighting and auto completion

Using the text editor it is possible make further modifications in a generated TyphonDL model or to

add additional specifications. Features such as volumes or network configurations can be added as

shown in Listing 8.

platform platformName : localhost {

cluster clusterName : DockerCompose {

networks weatherwarningapp

application Polystore {

container vehicledatadb : Docker {

deploys VehicleDataDB

networks weatherwarningapp
uri = vehicledatadb:27017;
volumes {

volumeName = vehicledata;
mountPath = /vehicledata;
volumeType = volume ;
volume {

nocopy = true;

}

}

}

volumes {

vehicledata

}

}

}

}

Listing 9: Adding volumes and networks in for a Docker-Compose

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 53

Confidentiality: Public Distribution

6.3.2.5 TyphonDL Script Generation and running the Polystore

To create deployment scripts the TyphonDL Script Generator has to be started by selecting the

created and completed DL model (main model file) and choosing Generate Deployment Scripts in

the TyphonDL context menu (see Figure 46). .

Figure 46: Generate Deployment Scripts

A folder with the name of the DL model is generated. It contains all files necessary to run the

Polystore deployment.

1. If Docker Compose was chosen, a Service is created for every database and the Polystore can be

started by running:

 $ docker-compose up -d

Show all running containers:

$ docker-compose ps

Show logs of a specific service (e.g. the API):

$ docker-compose logs typhon-polystore-service

Stop and remove the Polystore (including volumes):

$ docker-compose down -v

D7.8 Integrated Platform - Final Version

Page 54 Version 1.2 28 July 2020

Confidentiality: Public Distribution

2. If the DL model contains Resources or the replication of stateless Polystore parts (i.e. API,

QL server and Analytics.Kafka), the Polystore has to be started by running

 $ docker stack deploy --compose-file docker-compose.yaml typhon

with Docker running in Swarm Mode. Otherwise, the resource definition is ignored. The user can

also setup Docker in Swarm Mode using multiple worker nodes and deploy the Polystore as a

stack30.

Show all running containers:

$ docker stack services typhon

Stop and delete all Polystore containers:

$ docker stack rm typhon

3. If Kubernetes was chosen, a Deployment and a Service to connect to the Pod(s) created by the

Deployment is created for every database and the Polystore can be started by executing:

 $ sh deploy.sh

Stop and delete the Polystore deployment:

$ kubectl delete namespaces typhon

If the analytics component was started and also should be stopped and removed:

$ kubectl delete namespaces kafka

6.3.3 Typhon Query Language (QL) Eclipse Plugin

6.3.3.1 Initialize TyphonQL

The TyphonQL IDE can be used to develop new QL queries and inspect the Polystore. To start out,

we need to create a new project. Open the Eclipse IDE and go to Create a project. (or go to File →

New project)

30

 https://docs.docker.com/engine/swarm/stack-deploy/

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 55

Confidentiality: Public Distribution

Figure 47: Creating a new Project

Figure 48: New QL project

D7.8 Integrated Platform - Final Version

Page 56 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 49: QL Setup

Select Typhon QL project under TyphonQL wizard category (see Figure 48) and configure the pro-

ject with connection details of the Polystore (see Figure 49: QL Setup).

This is the structure of the newly created TyphonQL project:

It contains a scratch file where you can try queries, and a typhon.mf file that contains the connec-

tion details supplied in the wizard. We assume the Polystore is running and both a Typhon ML and

DL model had been uploaded. Only given such circumstances we can execute queries.

The following image shows the scratch tql file. You can right-click inside the text region of the edi-

tor, select the TyphonQL menu, and execute some useful actions on the Polystore. If the TyphonQL

menu is not shown, it could be that the environment needs more time to setup the TyphonQL lan-

guage. If that is the case, close the file and reopen it a minute later.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 57

Confidentiality: Public Distribution

Figure 50: Typhon QL options

As you can see, there are 4 possible actions available on the TyphonQL menu. From them, the last 3

are global operations on the Polystore, that act independently of whether there are queries written

on the tql file.

6.3.3.2 TyphonQL Global Operations

Reload schema from Polystore

This operation updates the schema that the IDE uses, using the properties specified in the typhon.mf

file to query the polystore again in order to get the schema. This action is needed if the Polystore

properties are changed in the configuration file or if new versions of the DL/ML models are updat-

ed in the poly store.

Dump Schema

This operation allows us to see a simple representation of the schema that is being used by the IDE.

D7.8 Integrated Platform - Final Version

Page 58 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 51: Dump Schema results

Reset Database

This action is needed in two cases: if the Polystore databases have not yet been created, and if they

exist, but the user wants to reset them. Notice that this step is fundamental before any querying

takes place. If there is a running Polystore in which both a Typhon ML and DL models have been

uploaded, this means that the infrastructure has been set up (the different kinds of native databases).

However, the logical databases in each database have not been created. To do so, we need to exe-

cute this action.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 59

Confidentiality: Public Distribution

Figure 52: Reset Polystore prompt

Executing Queries

Once the databases have been set up (see 2.1.3), we can query the Polystore. For this User Guide

we assume a Typhon model of Orders, Products, Users, Comments, Reviews, etc.

In this section we present a simple insertion and a selection query. For a reference on the syntax and

semantics of the TyphonQL language, refer to Section 6.3.5.

To query the Polystore, we start writing queries in the scratch.tql file, for example:

insert Product {
 name: "Raspberry Pi",
 description: "Small arm board",
 price: 100,
 productionDate: $2020-01-01$,
 availabilityRegion: #polygon((1.0 1.0, 2.0 2.0, 1.0 1.0))
}

D7.8 Integrated Platform - Final Version

Page 60 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 53: Insert query example

The previous query is an insertion operation. In order to execute it, we need to position the cursor

inside the region of the query text, and right-click on it. Then, from the TyphonQL menu, select Ex-

ecute.

We can also write a “selection” query to retrieve the orders, for instance:
from Product p select p.name

If we right-click on our new query and select TyphonQL→ Execute, this is the result, as expected:

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 61

Confidentiality: Public Distribution

Figure 54: Results of select query

6.3.4 Polystore API

The next step for using the Polystore is to perform queries. These can be performed either through

the API or directly through the Eclipse QL plugin. The first case, along with other API operations

will be described in this section.

All endpoints use Basic authentication, and as such the relevant header will need to be included in

all requests. Most of these services are also available on the Swagger page of the API. Additionally,

an up-to-date Postman collection can be found at

6.3.4.1 User Services

The API provides user management services. This allows already registered users to create, modify,

get or delete users. The relevant endpoints, example inputs & outputs can be found in the table be-

low:

Description Endpoint Body Output

Register a

new user

POST /user/register {"u":{

"username":"username"

,

"password":"password"

}

}

200 OK

Get all users GET /users N/A [

 {

D7.8 Integrated Platform - Final Version

Page 62 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 "username": "admin"

,

 "pass-

word": "admin1@"

 },

 {

 "username": "5f117d

57b3ec643e55a4cec7",

 "password": null

 }

]

200 OK

Update a user POST

/user/{username}

{"u":{"username":"5f1

17d57b3ec643e55a4cec7

","password":"passwor

d"}}

{

 "username": ":"5f117d57

b3ec643e55a4cec7",

 "password": "password"

}

200 OK

Delete a user DELETE

/user/{username}

N/A 200 OK

6.3.4.2 Backup/Restore Services

The API also offers backup and restore capabilities for some types of Polystore databases. These

requests can be found in the table below:

Description Endpoint Input Output

Backup a

database

POST /api/backup {

 "db_name":"maria",

 "type":"mariadb",

 "host":"maria",

 "port":"3306",

 "username":"root",

 "password":"choosePassword",

 "backup_name":"test_bkup"

}

{

 "filename":

"test_bkupmaria_mari

a_17072020.sql"

}

200 OK

Restore a

database

POST /api/restore {

 "db_name":"maria",

 "type":"mariadb",

 "host":"maria",

 "port":"3306",

 "username":"root",

 "password":"choosePassword",

 "back-

up_name":"test_bkupmaria_maria_1

7072020.sql"

200 OK

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 63

Confidentiality: Public Distribution

}

Download a

backup

GET

/api/download/{fil

ename}

N/A File download

200 Ok

6.3.4.3 Service/Database information Services

The result of the DL parsing, which occurs in the API and by consequence the connection

information regarding databases and services that are used by other components and the API can be

retrieved for debug/validation purposes. The requests that can be used for these retrievals are the

following:

Description Endpoint Input Output

Get Databases GET /api/databases N/A [

 {

 "name": "Reviews",

 "status": "ONLINE",

 "internalHost": "reviews",

 "externalHost": "reviews",

 "internalPort": 27017,

 "externalPort": 27017,

 "username": "chooseUsername",

 "password": "choosePassword",

 "dbType": "MongoDb",

 "serviceType": "Database",

 "engineType": "Document",

 "external": false

 },

 {

 "name": "Inventory",

 "status": " ONLINE",

 "internalHost": "inventory",

 "externalHost": "inventory",

 "internalPort": 3306,

 "externalPort": 3306,

 "username": "root",

 "password": "choosePassword",

 "dbType": "MariaDb",

 "serviceType": "Database",

 "engineType": "Relational",

 "external": false

 },

 {

 "name": "Stuff",

 "status": " ONLINE",

 "internalHost": "stuff",

 "externalHost": "stuff",

 "internalPort": 9042,

 "externalPort": 9042,

D7.8 Integrated Platform - Final Version

Page 64 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 "username": "admin",

 "password": "password",

 "dbType": "cassandra",

 "serviceType": "Database",

 "engineType": "KeyValue",

 "external": false

 },

 {

 "name": "MoreStuff",

 "status": " ONLINE",

 "internalHost": "morestuff",

 "externalHost": "morestuff",

 "internalPort": 7687,

 "externalPort": 7687,

 "username": "neo4j",

 "password": "choosePassword",

 "dbType": "neo4j",

 "serviceType": "Database",

 "engineType": "Graph",

 "external": false

 },

 {

 "name": "polystore_db",

 "status": " ONLINE",

 "internalHost": "polystore-

mongo",

 "externalHost": "polystore-

mongo",

 "internalPort": 27017,

 "externalPort": 27017,

 "username": "admin",

 "password": "admin",

 "dbType": "MongoDb",

 "serviceType": "Database",

 "engineType": "Document",

 "external": false

 }

]

Get Databases &

Services

GET /api/services N/A [

 {

 "name": "Reviews",

 "status": " ONLINE",

 "internalHost": "reviews",

 "externalHost": "reviews",

 "internalPort": 27017,

 "externalPort": 27017,

 "username": "chooseUsername",

 "password": "choosePassword",

 "dbType": "MongoDb",

 "serviceType": "Database",

 "engineType": "Document",

 "external": false

 },

 {

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 65

Confidentiality: Public Distribution

 "name": "Inventory",

 "status": " ONLINE",

 "internalHost": "inventory",

 "externalHost": "inventory",

 "internalPort": 3306,

 "externalPort": 3306,

 "username": "root",

 "password": "choosePassword",

 "dbType": "MariaDb",

 "serviceType": "Database",

 "engineType": "Relational",

 "external": false

 },

 {

 "name": "Stuff",

 "status": " ONLINE",

 "internalHost": "stuff",

 "externalHost": "stuff",

 "internalPort": 9042,

 "externalPort": 9042,

 "username": "admin",

 "password": "password",

 "dbType": "cassandra",

 "serviceType": "Database",

 "engineType": "KeyValue",

 "external": false

 },

 {

 "name": "MoreStuff",

 "status": " ONLINE",

 "internalHost": "morestuff",

 "externalHost": "morestuff",

 "internalPort": 7687,

 "externalPort": 7687,

 "username": "neo4j",

 "password": "choosePassword",

 "dbType": "neo4j",

 "serviceType": "Database",

 "engineType": "Graph",

 "external": false

 },

 {

 "name": "polystore_db",

 "status": " ONLINE",

 "internalHost": "polystore-

mongo",

 "externalHost": "polystore-

mongo",

 "internalPort": 27017,

 "externalPort": 27017,

 "username": "admin",

 "password": "admin",

 "dbType": "MongoDb",

 "serviceType": "Database",

 "engineType": "Document",

 "external": false

D7.8 Integrated Platform - Final Version

Page 66 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 },

 {

 "name": "polystore_api",

 "status": "ONLINE",

 "internalHost": "typhon-

polystore-service",

 "externalHost": "localhost",

 "internalPort": 8080,

 "externalPort": 8080,

 "username": null,

 "password": null,

 "dbType": null,

 "serviceType": "Software",

 "engineType": null,

 "external": null

 },

 {

 "name": "polystore_ui",

 "status": "ONLINE",

 "internalHost": "polystore-

ui",

 "externalHost": "localhost",

 "internalPort": 4200,

 "externalPort": 4200,

 "username": null,

 "password": null,

 "dbType": null,

 "serviceType": "Software",

 "engineType": null,

 "external": null

 },

 {

 "name": "polystore_ql",

 "status": "ONLINE",

 "internalHost": "typhonql-

server",

 "externalHost": "typhonql-

server",

 "internalPort": 7000,

 "externalPort": 7000,

 "username": null,

 "password": null,

 "dbType": null,

 "serviceType": "Software",

 "engineType": null,

 "external": null

 }

]

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 67

Confidentiality: Public Distribution

6.3.4.4 ML/DL model Services

Additionally, the ML and DL models that are used by QL are managed in the API. As such, you can

use the API to upload new versions of these models or download latest or oldest versions already

uploaded to the API. The corresponding endpoints are the following:

6.3.4.5 CRUD Services

The Polystore API, through the QL server also supports explicit CRUD, operations on entities. Ex-

ample operations can be seen in the table below.

Description Endpoint Input Output

Get ML

Get DL

GET

/api/model/ml

GET

/api/model/dl

N/A [

 {

 "id": "b8859d8f-3e69-

4737-b910-d2e88e587c00",

 "version": 1,

 "initializedData-

bases": false,

 "initializedConnec-

tions": false,

 "contents": "...xml con-

tents...”

 "type": "ML/DL",

 "dateReceived": "2020-

07-17T09:44:11.212+0000"

 }

200 OK

Update ML

Update DL

POST

/api/model/ml

POST

/api/model/dl

{

 "name":"name

",

 "con-

tents": "xml

contents”

}

200 OK

Get specific version

of a model

GET

/api/model/{type

}/{version}

N/A File

200 OK

D7.8 Integrated Platform - Final Version

Page 68 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Description Endpoint Input Output

Insert

Entity

POST

/crud/{entity}

For e.g. /crud/User

{ "name": "\"Patrick\"",

 "age": "39" }

200 OK

{ "@id": "#b58f8848" }

Get Entity GET

/crud/{entity}/{id}

For e.g. /crud/User/

b58f8848

{ "@id": "#b58f8848",

 "name": "\"Patrick\"", "age"

: "39" }

Update

Entity

PATCH

/crud/{entity}/{id}

For e.g. /crud/User/

b58f8848

{ "age": "40" }

200 OK

Delete

Entity

DELETE

/crud/{entity}/{id}

For e.g. /crud/User/

b58f8848

200 OK

6.3.4.6 QL Services

Queries on the Polystore can also be made through the use of the API. The relevant inputs and out-

puts are shown in the table below.

Description Endpoint Input Output

Reset data-

bases

GET

/api/resetdatabases

N/A 200 OK

true/false

Query Data-

bases (select

queries)

POST /api/query from Review o select o

200 OK
{"columnNames":

["o.content","o.locatio

n"

,"o.screenshot","o.prod

uct","o.user"],

"values":[]}

Update Da-

tabases

(update/insert

POST /api/update insert User{name:"test",

age:30}

200 OK
{"affectedEntities":-

1,"createdUuids":{"uuid

":"c6a7d4c7-b1b1-4943-

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 69

Confidentiality: Public Distribution

queries) 98e6-8316e13d9f24"}}

Batch update

databases

(batch in-

sert/update

queries)

POST

/api/preparedupdate

{"command":

"insert User{name:??name,

age:??age}",

"parameterNames":

["name,age"],

"boundRows":

[["john,jack"],["30","29"]]}

200 OK
[{"affectedEntities":-

1,"createdUuids":{"uuid

":"3bbd0bc7-f98d-4719-

8e39-

3d8867dbe673"}},{"affec

tedEntities":-

1,"createdUuids":{"uuid

":"3f82286c-fc50-4261-

bc4c-fc1910b1601f]

6.3.5 Typhon Query Language (QL)

6.3.5.1 Introduction

TyphonQL
31

 is a query language and data-manipulation language (DML) to access polystores (fed-

erations of different kinds of database back-ends, relational, document, key-value etc.) while at the

same time abstracting as much as possible from how the data is actually stored.

Executing TyphonQL queries is parameterized by a TyphonML model, which provides the logical

data schema in the form of an object-oriented information model. A TyphonML model declares en-

tities with primitively-typed attributes, and bi-directional (many-valued) relations (which can be

containment/ownership) relations.

TyphonQL is designed to allow the query writer to think at the level of TyphonML entities as much

as possible. With TyphonQL one does not manipulate tables, graphs, documents, or key-value pairs,

but sets of objects which may have relations to each other, and which conform to the entity types

declared in the TyphonML model.

The present document aims to describe the TyphonQL in sufficient detail for end-users of the lan-

guage. Thus, it is not a formal reference document, but rather a short overview, touching upon the

most common and most quirky features in equal amount.

The next section presents an abstract overview of the language, and after we present the language

using numerous examples.

6.3.5.2 The Language

This section provides a cursory overview of the language.

31

 The latest version of this Section of the guide can be found on: https://github.com/typhon-

project/typhonql/blob/master/typhonql/doc/typhonql.md

https://github.com/typhon-project/typhonql/blob/master/typhonql/doc/typhonql.md
https://github.com/typhon-project/typhonql/blob/master/typhonql/doc/typhonql.md

D7.8 Integrated Platform - Final Version

Page 70 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Literal expressions

TyphonQL supports the following literal (constant) expressions:

 Booleans: true, false

 Integer numbers: 123, -34934

 Strings: "this is a string value"

 Floating point numbers: 0.123, 3.14, -0.123e10, 2324.3434e-23

 Dates: $2020-03-31$

 Date and time values: $2020-03-31T18:08:28.477+00:00$

 Geographical points: #point(23.4 343.34)

 Polygons: #polygon((23.4 343.34), (2.0 0.0));

 Null (indicating absence of a reference or value): null

 Blob-pointers: #blob:2ed99a8e-5259-4efd-8cb4-66748d52e8a1

Furthermore, TyphonQL supports syntax for dealing with objects (instances of entity types):

 Object literals (tagged with the entity type, in this case Person): Person {name: "Pablo", age:

30, reviews: [#879b4559-f590-48ea-968c-ff3b69ec5363, #23275eec-4746-4f23-a854-

660160cafed2]}

 Reference values (pointers), represented as UUIDs: #879b4559-f590-48ea-968c-

ff3b69ec5363

 Collections of pointers to objects: [#8bc3f0a0-5cf4-42e5-a664-0617feb2d400, #23275eec-

4746-4f23-a854-660160cafed2, #879b4559-f590-48ea-968c-ff3b69ec5363]

Object literals are used as argument to insert statements, and (lists of) references are used in both

insert and update statements to create links/relations between objects. In the future we might sup-

port nesting of object literals and within-insert symbolic cross referencing to manipulate complete

object graphs all at once.

Other expressions

Select queries as well as update and delete statements use expressions to filter results and find ob-

jects to operate on respectively. For instance, a from-select query specifies a number of result ex-

pressions and conditions in the where-clause. Update and delete find the object(s) to be update resp.

deleted using similar conditions in a where-clause.

TyphonQL supports the following non-literal expressions:

 Attribute or relation access: entity.field

 Accessing the identity of an object: entity.@id

 Boolean operators: !exp (negation), exp1 && exp2 (conjunction), exp1 || exp2 (disjunction)

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 71

Confidentiality: Public Distribution

 Arithmetic operators: exp1 * exp2, exp1 / exp2, exp1 + exp2, exp1 - exp2

 Comparison operators: exp1 == exp2, exp1 != exp1, exp1 > exp2, exp1 >= exp2, etc.

The prefix and infix operators follow the precedence levels of Java-like languages.

To be implemented:

 member operator: exp1 in exp2

 textual match operator: exp1 like exp2

Geographical expressions

pt1 = point(1.3,2.5)
pt2 = point(3.5,4.6)
pg1 = polygon([
 [point(0,0), pt1],
 [pt1, point(1,1)],
 [point(1,1), pt2],
 [pt2, point(0,0)]
])
pg2 = polygon([
 [point(3,0), pt1],
 [pt1, point(2,2)],
 [point(2,2), pt2],
 [pt2, point(3,2)]
])

distance in meters:

 two points: distance(pt1, pt2)

 one point and closest edge of polygon: distance(pt1, pg2)

containment:

 point inside a polygon: pt1 in pg2

 polygon fully inside another polygon: pg1 in pg2

overlap:

 polygon partially overlaps another polygon: pg1 & pg2

note: on MongoDB backends distance is limited to the where query and only in presence of a com-

parison operator.

Blobs

Blobs are handled in a special way, during insertion/update you have to send them as a pointer to a

blob: #blob:UUID (and pass along the contents of the blob to the API in a separate field). While se-

lecting them, you get a base64 encoded version of the blob. It is not possible to do any operations

on them, they are opaque.

D7.8 Integrated Platform - Final Version

Page 72 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Queries

Queries follow the tradition of SQL queries, except that the select and from parts are swapped. A

basic query thus has the form of "from bindings select results where conditions". Bindings consist

of a list of "Entity Variable" pairs, separated by comma, which introduce the scope of the query.

Results is a list of expressions (separated by commas) that will make up the final result of the query.

The where-clause is optional, but if present it consists of a list of expressions (separated by com-

mas) filtering the result set.

For now, in results the only allowed expressions are x (an entity variable introduced in the bind-

ings), x.@id, and x.f (attribute or relation access).

DML

The general form of the insert statement is "insert Entity { assignments }". The entity is the type of

the object to be inserted as defined in the TyphonML statement. The assignments are bindings of

the form "attrOrRelation: expression". The TyphonQL type checker will check that all assignments

are correctly typed according the TyphonML model, including multiplicity constraints.

Update and delete statements specify the objects to work on via where-clauses. For instance, update

has the form "update Entity x where conditions set { assignments }". The assignments are the same

as in insert, except that for many-valued relations, they can specify additions ("relation +: expres-

sion") and removals ("relation -: expression").

Delete has the form "delete Entity x where conditions", which will delete all entities of type Entity

satisfying the conditions in the where-clause.

All three DML statements ensure (as much as possible) that relational integrity is preserved, even

across database back-ends. In particular this means:

 creating resp. breaking a relation between entities entail creating resp. breaking the inverse

link as well (if so declared in the TyphonML model)

 deleting an object will delete all objects "owned" by it via containment relations (cascading

delete).

Cascading delete of contained object is currently limited to one hop across database boundaries. In

other words, if a sequence of containment relations alternatingly cross multiple database back-ends

the cascade is only performed for the first relation.

6.3.5.3 TyphonQL by Example

Introduction

In this section we will illustrate TyphonQL using numerous examples. The example queries and

DML statements should be understood in the context of an example TyphonML, which is shown

below.
entity Product {
 name : string[256]
 description : string[256]
 price : int
 productionDate : date
 reviews :-> Review."Review.product"[0..*]
 wish :-> Wish."Wish.product"[1]

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 73

Confidentiality: Public Distribution

}

entity Review {
 content: text
 product -> Product[1]
 user -> User[1]
}

entity User {
 name : string[256]
 address: string[256]
 biography :-> Biography[0..1]
 reviews -> Review."Review.user"[0..*]
 wish :-> Wish."Wish.user"[1]
}

entity Biography{
 content : string[256]
 user -> User[1]
}

entity Wish {
 intensity: int
 user -> User[1]
 product -> Product[1]
}

relationaldb Inventory {
 tables{
 table { UserDB : User }
 table { ProductDB : Product }
 }
}

documentdb Reviews {
 collections{
 Review : Review
 Biography : Biography
 }
}

graphdb Wishes {
 edges {
 edge Wish {
 from "Wish.user"
 to "Wish.product"
 }
 }
}

Entities Product and User are deployed to an SQL database (MariaDB), called Inventory; the Re-

view and Biography entities are stored on a (MongoDB) document-store called Reviews; and the

Wish entity is stored on a (Neo4J) graph database.

Products own a number of Reviews ("deleting a product will delete associated reviews as well") via

the relation reviews. The ownership link can be traversed from the product reference in Reviews

because of the opposite declaration on reviews.

D7.8 Integrated Platform - Final Version

Page 74 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Reviews are also authored by users, which is modeled by the reviews relation on the User entity.

This relation is not a containment relation, because an entity can only be owned by a single entity at

one point in time. User biographies however are owned by User entities via the biography relation.

A Wish relates one user to one product, holding a value for the "intensity" of this relation. Entities

that are stored in graph databases have a number of constraints, as they represent edges in this kind

of backends. Wish must have exactly two related entities with cardinality 1, and the opposite rela-

tion might be declared in the related entities, as long as they represent containment and have cardi-

nality one (see wish relation in Product and User). In other words, removing any of the entities that

correspond to the vertices should also remove the "edge" entity. The directionality of the relation is

established in the database mapping, particularly, in the graphdb section, where we see which rela-

tion represent the source and which one the target inside the graph database.

Well-formedness of TyphonML models

TyphonQL assumes TyphonML models are well-formed in the following ways:

 all entities are are placed on a database back-end

 containment is uni-directional (e.g. inverses of containment cannot be containment)

 containment is not many-to-many (i.e. tree shaped)

 containment is uniquely rooted: every owned entity can be reached from a unique path start-

ing from an entity that is not owned

Realizing references

TyphonML references support bidirectional navigation over relations between entities through in-

verses (AKA "opposites"). In other words, it is possible to navigate across a single relation in two

ways. In order to support this in the implementation of TyphonQL, such bidirectional relations are

realized in the back-ends in both directions. TyphonQL ensures that updates to a relation are always

mirrored in the other direction according to the opposite declaration(s). This means that how you

navigate across a relation (from which direction) may have different consequences at the level of

the implementation.

The only exceptions to this rule are:

 a containment relation within SQL is always modeled using a single foreign key from child

to parent

 a cross-reference relation within SQL is modeled using a single junction table (representing

both directions).

Querying

Selecting all users:
from User u select u

This will return the identities of all users.

Selecting specific attributes of users:
from User u select u.name

This will return the identities of the users paired with their name.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 75

Confidentiality: Public Distribution

Selecting a specific relation:
from User u select u.reviews

This will return pairs of user identity and review identity. If a user has no reviews, its identity will

be paired with null.

Filtering on a specific attribute:
from User u select u where u.name == "Pablo"

This will return the identities of the users with name = “Pablo”

A complex query across database boundaries: find all user and product name pairs for which a user

has written a review containing the word "bad".
from User u, Product p, Review r select u.name, p.name
 where u.reviews == r, p.reviews == r, r.text like "bad"

Note the use of "==" even for many-valued references.

Manipulating Data

With insert: custom data type value must be fully specified, but in updates, you can partially update

sub-fields.
insert User { name: "John Smith", age: 30 }
insert User { name: "John Smith", age: 30, cards: [#a129feec-4b92-4ab2-9ef5-
d276a7566f56] }
insert CreditCard { number: "1762376287", expires: $2020-02-21T14:03:45.274+00:00$ }

The following is not allowed, because owner is an inverse.
insert CreditCard {
 number: "1762376287",
 expires: $2020-02-21T14:03:45.274+00:00$,
 owner: #ff704edc-5d85-470b-9ed4-fb8761bbe93a
}

Alternative is:
insert CreditCard {
 number: "1762376287",
 expires: $2020-02-21T14:03:45.274+00:00$
}

and then:
update User u where u.@id == #ff704edc-5d85-470b-9ed4-fb8761bbe93a
set { cards +: [#the-id-of-the-new-creditcard] }

Or, (better), inserting into owner directly:

Update

Well-formedness of Update

 you cannot update @id fields

 no nested object literals

Updating simple-valued attributes
update User u where u.name == "John Smith" set { age: 30 }

Setting a relation:
update Review r where r.@id == #13245f43-634f-46bf-a73d-6bd30865f5d4
 set { author: #a129feec-4b92-4ab2-9ef5-d276a7566f56 }

This is equivalent to:
update User u where u.@id == #a129feec-4b92-4ab2-9ef5-d276a7566f56
 set { reviews +: [#13245f43-634f-46bf-a73d-6bd30865f5d4] }

D7.8 Integrated Platform - Final Version

Page 76 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Setting a many-valued relation:
update User u where u.name == "John Smith"
 set { cards: [#a129feec-4b92-4ab2-9ef5-d276a7566f56] }

Adding:
update User u where u.name == "John Smith"
 set { cards +: [#a129feec-4b92-4ab2-9ef5-d276a7566f56] }

Removing
update User u where u.name == "John Smith"
 set { cards -: [#a129feec-4b92-4ab2-9ef5-d276a7566f56] }

Delete

cascade to owned things, but only one hop across database boundaries (so from DB A to DB B, but

not continuing from DB B to DB c) .

Placeholders

update User u where u.@id == ?
 set { cards +: [#a129feec-4b92-4ab2-9ef5-d276a7566f56] }

Named placeholders:
update User u where u.@id == ??param
 set { cards +: [#a129feec-4b92-4ab2-9ef5-d276a7566f56] }

6.3.6 Evolution

6.3.6.1 Schema and data evolution/migration (D6.3)

This command-line application permits to evolve/migrate automatically the deployed TyphonML

polystore schema, the corresponding physical structures and data from one polystore schema

version to another, using evolution operators defined in the Typhon ML grammar.

To execute the application:

1. Download the jar from: http://typhon.clmsuk.com/static/evolution-tool.jar

2. For the first usage:

 Run the jar with the command: java -jar evolution-tool.jar

 Open the automatically created “application.properties” file and check the configuration.

The properties should contain the input and result XMI files paths for the evolution

operators you would like to execute. The following properties are the most important to

check/fill (“RESULT_FILE” corresponding file can be empty, and will be populated

with the evolution tool):

INPUT_XMI=addAttribute.xmi

POLYSTORE_API_USER_PASSWORD=admin\:admin1@

http://typhon.clmsuk.com/static/evolution-tool.jar

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 77

Confidentiality: Public Distribution

RESULT_FILE=addAttribute_result.xmi

POLYSTORE_API_URL=http\://localhost\:8080/

 Run again the command: java -jar evolution-tool.jar

3. For next usages:

 Open the “application.properties” file and replace the input and result XMI files paths

for the evolution operators you would like to execute. For example:

INPUT_XMI=removeAttribute.xmi

RESULT_FILE=removeAttribute_result.xmi

 Run the command: java -jar evolution-tool.jar

To create the input XMI file, you should use the TyphonML Eclipse-based textual or graphical

editors on the TML schema file. Regarding the use of the graphical editor, we refer to the

TyphonML documentation. Below, you can find the TML textual syntax for the evolution operators

supported by the polystore schema and data evolution/migration tool:

D7.8 Integrated Platform - Final Version

Page 78 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 79

Confidentiality: Public Distribution

D7.8 Integrated Platform - Final Version

Page 80 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Once the desired evolution operators have been specified using the Eclipse-based editors (textual or

graphical) you can generate the corresponding XMI file by using the Eclipse TML plugin (right-

click on the TML file, then “Typhon” and “Inject to model” buttons).

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 81

Confidentiality: Public Distribution

Figure 55: Use Inject to model to generate XMI file

Once the full XMI file is generated, you can use it as input of the schema and data

evolution/migration tool, by providing the path to the XMI file in the “application.properties” file.

Log messages are provided in the console where you run the schema/data evolution tool. The output

of the evolution tool is the XMI file referenced in the “application.properties” file, under the

“RESULT_FILE” property. In addition to the target Polystore schema produced as output, the

Polystore data structures and database contents have been modified according to the desired

evolution operators.

6.3.6.2 Query evolution (D6.4)

The Query Evolution Tool is a plugin for Eclipse helping the developers to identify TyphonQL

queries impacted by a change in the Polystore schema, and to automatically adapt those queries to

the target Polystore schema, when possible. This section will cover the installation and the usage of

the query evolution plugin.

D7.8 Integrated Platform - Final Version

Page 82 Version 1.2 28 July 2020

Confidentiality: Public Distribution

4. Installation

The eclipse repository for this sub-project is : http://typhon.clmsuk.com:8082/typhon-

evolution/repository

5. Overview

The plugin introduces a new kind of file with the extension „.qevo‟. An evolution file is made of

two-part :

 Schema to Apply: A line referencing the schema used to evolve the Polystore.

 Query List: The TyphonQL queries to evolve separated by a comma.

Here is a minimal example of .qevo file :

apply ./src/xmi/addRelationChangeOperator.xmi;
from Order o select o,
from Order o select o.id,
delete User u where u.id == 42

Applying the Query Evolution process to a .qevo file will assign a status to each output TyphonQL

query. There are 4 different statuses :

 UNCHANGED: the input query has not been changed since it remains valid with respect to

the target schema;

 MODIFIED: the input query has been transformed into an equivalent output query,

expressed on top of the target schema;

 WARNING: the output query (be it unchanged or modified) is valid with respect to the

target schema, but it may return a different result set;

 BROKEN: the input query has become invalid, but it cannot be transformed into an

equivalent query expressed on top of the target schema.

Queries with the status WARNING or BROKEN are also accompanied by a comment explaining

which change operator causes them to take that status and why.

Here is an example of .qevo file after the query evolution process:

apply ./src/xmi/addRelationChangeOperator.xmi;

http://typhon.clmsuk.com:8082/typhon-evolution/repository
http://typhon.clmsuk.com:8082/typhon-evolution/repository

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 83

Confidentiality: Public Distribution

WARNING

#@ Attribute users added to Order. Result of the query may have changed @#

from Order o select o,

WARNING

#@ Attribute users added to Order. Result of the query may have changed @#

from Order o select o.id,

UNCHANGED

delete User u where u.id == 42

Usage

Once the plugin is installed, create a new text file with the extension „.qevo‟ in your project. The

first line of this file should be the path of the xmi file containing the schema and the change

operator (the same file expected by the schema evolution tool). The syntax of this line is :

apply <path>;

where the path is relative to the root of your eclipse project.

After the „apply‟ line you can copy paste the query you want to evolve separated by comma (see

Figure below).

D7.8 Integrated Platform - Final Version

Page 84 Version 1.2 28 July 2020

Confidentiality: Public Distribution

When all your queries are in the evolution file, you can apply the transformation by right clicking in

the editors and select query evolution -> evolve.

The plugin will rewrite the .qevo file with the evolved queries:

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 85

Confidentiality: Public Distribution

The updated queries could then be reused in the source code of the developers.

6.3.6.3 Polystore Continuous Evolution

The continuous evolution tool aims to monitor data usage performance in a Typhon Polystore in

order to provide users with schema evolution recommendations, when relevant.

The tool communicates with several Polystore components, including the post-execution events

queue (WP5) and, through the Polystore API, the Polystore TyphonML schema (WP2) and the

Polystore databases (WP3 and WP4). This allows the continuous evolution to automatically retrieve

useful information about the Polystore, including:

 the Polystore configuration, i.e., the TyphonML entities and their mapping to underlying

native databases;

 the TyphonQL queries that are executed by the TyphonQL engine, and their duration;

 the (evolving) size of the TyphonML entities over time.

Overview

The general architecture of the continuous evolution tool is depicted in Figure 56 below. Each time

a post-execution event is published to the post-event queue, a Java application wakes up and

retrieves the event. If the event corresponds to a DML query execution, the Java application sends

the corresponding TyphonQL query to a Rascal plugin. The latter parses, analyses and classifies the

query and sends back the corresponding query information to the Java application. This information

is stored in an internal MongoDB database, which is used as input by an interactive web

application. The web application, relying on an Angular frontend and a Node.js backend, provides

users with visual analytics of the Polystore data usage, as well as with performance-based schema

reconfiguration recommendations. Each of these steps is described in further details in the

remaining of this section.

D7.8 Integrated Platform - Final Version

Page 86 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 56: Architecture of the continuous evolution tool

Step 1. Capturing TyphonQL queries

The continuous evolution tool exploits the Polystore monitoring mechanisms developed in Work

Package 5. Thanks to those mechanisms, the tool can capture at runtime the successive TyphonQL

queries that are sent to the Polystore, and executed by the TyphonQL engine. To do so, the tool

consumes and analyses the so-called post-execution events (PostEvent), generated and pushed by

the TyphonQL engine to the analytics queue of the WP5 monitoring infrastructure. We refer to

deliverable D5.3 for more details about this infrastructure.

Step 2. Parsing and classifying TyphonQL queries

The post-execution events captured at Step 1 include the TyphonQL queries that have been

executed by the TyphonQL engine. The continuous evolution tool parses each of those queries, in

order to extract relevant information to be used during the analytics and recommendation phases.

Our tool focuses on post-execution events corresponding to DML queries, i.e., select, insert, delete,

and update queries. It ignores other events such as, for instance, the execution of DDL queries (e.g.,

create entity, delete entity, etc.) sent by the schema evolution tool to the TyphonQL engine.

The tool parses each captured TyphonQL query in order to extract relevant information, including:

 the type of query (select, insert, delete, update);

 the accessed TyphonML entities;

 the join conditions, if any;

 the query execution time, expressed in ms.

The query parsing and extraction step is implemented using Rascal, based on TyphonQL syntax.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 87

Confidentiality: Public Distribution

Once the query is parsed and analyzed, the tool also classifies it. This classification aims to group

together all TyphonQL queries of the same form. A group of TyphonQL queries is called a query

category. The queries belonging to the same query category are queries that would become the same

query after replacing all input values with placeholders.

In addition to parsing, analyzing and classifying the queries executed by the TyphonQL engine, the

continuous evolution tool also extracts - at regular time intervals - information about the Typhon

Polystore, with a particular focus on TyphonML entities. This includes, in particular, the size of

each TyphonML entity, expressed in terms of number of records, e.g., number of rows for a

relational table or number of documents for a MongoDB collection.

The extracted information is stored in an internal MongoDB database.

This MongoDB database populated during Step 2 constitutes the main input of the next three steps,

which respectively aim at:

 providing users with interactive visual analytics of the Polystore data usage (Step 3);

 providing users with Polystore reconfiguration recommendations for those query categories

suffering from poor performance (Step 4);

 applying the reconfiguration recommendations selected by the user (Step 5).

Step 3. Visual analytics of Polystore data usage

The main page of the visual analytics tool is depicted in Figure 57. This page provides the user with

a general overview (1) of the Polystore configuration and (2) of the Polystore data usage at a

coarse-grained level.

Figure 57: Main page of the visual analytics tool

D7.8 Integrated Platform - Final Version

Page 88 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 Polystore schema view: the tool provides the user with a global overview of the current

schema configuration of the Polystore, as shown in Figure 58.

Figure 58: Overview of the current schema configuration of the Polystore

 Polystore entities view: the tool provides the user with a global overview of the current size

of the Polystore entities, as shown in Figure 59.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 89

Confidentiality: Public Distribution

Figure 59: Overview of the current size of the Polystore entities

The evolution of the entity size over time is also provided, as shown in Figure 60.

Figure 60: Evolution of the entity size over time

 Polystore CRUD operations view: a similar metric is provided for the distribution CRUD

operations by TyphonML entity, as shown in Figure 61 and Figure 62.

D7.8 Integrated Platform - Final Version

Page 90 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Figure 61: CRUD operation distribution

Figure 62: Proportion of queried entities

The user can also look at the evolution of the number of CRUD operations executed over time, at

the level of the entire Polystore, as depicted in Figure below:

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 91

Confidentiality: Public Distribution

Figure 63: CRUD operation distribution over time

 Polystore queries view: the user can then have a finer-grained look at the TyphonQL

queries executed by the TyphonQL engine on the Polystore. In the query view, the tool

provides the user with two searchable lists, i.e., (1) the list of the most frequent query

categories, in decreasing order of number of occurrences, and (2) the list of slowest queries,

in decreasing order of execution time, as shown in Figure 64.

Figure 64: TyphonQL queries monitoring

D7.8 Integrated Platform - Final Version

Page 92 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Step 4. Recommending Polystore schema reconfigurations

When inspecting a particular (slow) query, the user can ask the tool for recommendations on how to

improve the execution time of the query. When possible, the tool then recommends Polystore

schema reconfigurations, in the form of a menu with clickable options, including one or several

recommendations. Some of the provided recommendations may be mutually-exclusive, which

means that they cannot be selected together in the menu.

For example, let us suppose that the user has identified the following slow query:

from Address x0, User x1 select x0, x1 where x0.user == x1, x0.country == “?”

Figure 65: Query execution monitoring

This slow query involves a join between entities User and Address and a selection operator based

on the value of the Address.country attribute.

In this case, the continuous evolution tool recommends two possible, non-exclusive schema

reconfigurations (as shown in Figure 66) that respectively consist in:

1. defining an index on column AddressDB.country, which maps with attribute

Address.country;

2. merging entity Address into entity User, via the one-to-one relation "Address.user" that

holds between them.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 93

Confidentiality: Public Distribution

Figure 66: Schema evolution recommendations

By positioning the mouse pointer on the information icon, the user can get further information

about the expected positive impact of the recommended schema change on the execution time of the

query. Adding an index on a column c is a well-known technique to speed up a query including an

equality condition on c in its where clause.

In the particular case of the considered query, attribute Address.country is used in an equality

condition. As there is no index defined on table AddressDB (mapped with entity Address), the

recommendation to define an index on column AddressDB.country is proposed.

Merging two entities into a single entity constitutes another recommendation that allows avoiding a

costly join condition in a slow query. In our example, the recommendation to merge entity Address

into entity User is motivated by the fact that the two entities are linked together via a one-to-one

relationship (thus have the same number of records), and that both entities rapidly grow in terms of

size, making the join condition slower and slower.

Step 5. Applying the selected recommendations

Using the option menu, the user may then choose which evolution recommendation(s) (s)he wants

to actually follow by selecting the desired option(s). Once this selection has been done by the user,

the user can click on the copy change operators to clipboard button. The tool will then automatically

generate the list of schema evolution operators corresponding to the selected recommendations.

These operators are expressed according to the TyphonML textual syntax (TML). So the user can

simply paste the operators from the clipboard to the TML file of his TML schema, and then invoke

the schema evolution tool via the Typhon API by passing the modified TML file as input.

Please refer to deliverable D6.5 for further details about the Polystore Continuous Evolution tool.

D7.8 Integrated Platform - Final Version

Page 94 Version 1.2 28 July 2020

Confidentiality: Public Distribution

How to deploy and use the Polystore Continuous Evolution component

The user can deploy the Polystore Continuous Evolution component with the help of the TyphonDL

Creation Wizard. As this component exploits the Polystore monitoring mechanisms developed in

Work Package 5, the user must obligatorily check the “Use Typhon Data Analytics” option. Once

checked, other options are revealed (as shown in Figure 67).

Figure 67: TyphonDL Creation Wizard

To install the Polystore Continuous Evolution component, the user must check the “Use Typhon

Continuous Evolution” option and finalize the creation.

Once the configuration of the TyphonDL Creation Wizard is completed, the Wizard generates the

different Docker deployment scripts.

In the main Docker YML (.yml) file, the user can find the Polystore containers definition. At the

end of this file, is located the definition of the four containers of the Polystore Continuous

Evolution component (see Figure below):

1. evolution-mongo: the MongoDB database populated during Step 2, constituting the main

input of the web application.

2. evolution-java: the Java application which captures, parses the QL queries and which stores

the query information in the MongoDB database.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 95

Confidentiality: Public Distribution

3. evolution-backend: the Node.js backend of the web application.

4. evolution-frontend: the Angular frontend of the web application; it provides users with

visual analytics.

Figure 68: Containers of the Polystore Continuous Evolution component

D7.8 Integrated Platform - Final Version

Page 96 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Note that each container has its own configurable parameters:

evolution-mongo:

The user can specify the credentials to connect the MongoDB database;

 MONGO_INITDB_ROOT_USERNAME: it specifies the user login to create.

 MONGO_INITDB_ROOT_PASSWORD:it specifies the user password to create.

 MONGO_INITDB_DATABASE: it specifies the database name to create.

evolution-java:

 WAKEUP_TIME_MS_FREQUENCY: the continuous evolution tool also extracts - at

regular time intervals - information about the Typhon Polystore; this variable specifies, in

milliseconds, this wakeup interval.

 KAFKA_CHANNEL_IP: it specifies the kafka container ip. This variable is required so that

the java application can consume the PostEvent generated by the analytics queue of the

WP5 monitoring infrastructure.

 KAFKA_CHANNEL_PORT: it specifies the kafka container port.

 WEBSERVICE_URL: it specifies the Polystore service url.

 WEBSERVICE_USERNAME: it specifies the user login necessary to connect the Polystore

service.

 WEBSERVICE_PASSWORD: it specifies the user password necessary to connect the

Polystore service.

 ANALYTICS_DB_IP: it specifies the evolution-mongo database ip.

 ANALYTICS_DB_PORT: it specifies the evolution-mongo database port.

 ANALYTICS_DB_USER: it specifies the user login necessary to connect the evolution-

mongo database.

 ANALYTICS_DB_PWD: it specifies the user password necessary to connect the evolution-

mongo database.

 ANALYTICS_DB_NAME: it specifies the evolution-mongo database name to connect.

evolution-backend:

 BACKEND_DEPLOYMENT_PORT: it specifies the port on which will be deployed the

Node.js backend.

 ANALYTICS_DB_URL: it specifies the evolution-mongo database ip.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 97

Confidentiality: Public Distribution

 ANALYTICS_DB_NAME: it specifies the evolution-mongo database name to connect.

 ANALYTICS_DB_USER: it specifies the user login necessary to connect the evolution-

mongo database.

 ANALYTICS_DB_PWD: it specifies the user password necessary to connect the evolution-

mongo database.

 WEBSERVICE_URL: it specifies the Polystore service url.

 WEBSERVICE_USERNAME: it specifies the user login necessary to connect the Polystore

service.

 WEBSERVICE_PASSWORD: it specifies the user password necessary to connect the

Polystore service.

evolution-frontend:

 BACKEND_ENDPOINT: it specifies the Node.js backend url.

Once the Polystore (and the four Polystore Continuous Evolution containers) have been deployed,

the user can access the web application at http://localhost:5000/.

6.3.6.4 Data Ingestion (D6.5)

The Data Ingestion tool aims to ease the adoption of the Typhon innovative technologies. It allows

one to ingest data from (a set of) pre-existing relational database(s) into a Typhon Polystore.

Figure 69: Data ingestion process

Overview

The data ingestion process relies on three steps (as shown in Figure 69):

http://localhost:5000/

D7.8 Integrated Platform - Final Version

Page 98 Version 1.2 28 July 2020

Confidentiality: Public Distribution

 Step 1 - extraction: The tool first reverse-engineers the relational database schema of each

input database, in order to produce a TyphonML schema. It also generated a set of data

ingestion scripts (containing prepared QL queries) allowing to transfer the data from the

input relational database(s) towards the Polystore, as soon as the latter will be deployed.

 Step 2 - deployment: The user takes the automatically extracted TML schema, and uses as

starting point to manually deploy a new (empty) Typhon Polystore. This deployment step

can be done by means of the tools provided by Work Package 3.

 Step 3 - ingestion: The user can then execute the generated data ingestion scripts in order to

populate the freshly created Polystore with the data extracted from the input relational

databases.

Installation (building with maven)

cd data_ingestion

mvn clean install

Step 1. Extraction

The extraction phase mainly consists in extracting the data structures (schemas) of the relational

databases given as input, and to abstract those data structures into a TyphonML schema. This

schema abstraction process is achieved according to the following abstraction rules.

 each table including at least one non-foreign key column becomes a conceptual entity;

 each non-foreign key column (except auto-increment identifier) of a table becomes an

attribute of the corresponding entity;

 each foreign-key becomes a one-to-many relationship;

 each table that only consists in two foreign keys referencing respectively table t1 and table

t2, becomes a many-to-many relationship between the corresponding entities;

 all relational schema elements including identifiers(except auto-increment identifier) and

indexes are also translated into corresponding TyphonML schema constructs.

As an example, let us consider the input relational schema of Figure below. This schema includes 4

tables: Customer, Orders, Product and Details.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 99

Confidentiality: Public Distribution

Figure 70: Example input relational schema with four tables

The input schema would be abstracted as three entities. Tables Customer, Orders and Product have

been translated into corresponding entities.

Figure 71: Input schema extracted as three entities

D7.8 Integrated Platform - Final Version

Page 100 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Table Details has been abstracted as a many-to-many relationship. The foreign keys in table Orders

referencing table Customer has been abstracted as a one-to-many relationship between the

corresponding entities. This conceptual abstraction will lead to the production of the TyphonML

schema given below. This schema can be used as starting point of the deployment step (Step 2).

In order to connect to the input databases, the data ingestion tool requires the user to specify the

required URL and credentials. This information must be contained in a configuration file

("extract.properties").

In this file, one can specify the connection information of one or several relational databases. The

following extraction parameters can be specified, for each input relational database:

 URL : the JDBC URL necessary to connect to the database.

 DRIVER : the JDBC driver necessary to connect to the database.

 USER : a user login with reading permissions.

 PASSWORD : the user password.

 SCHEMA : the name of the input database schema name to connect.

In the case of several input relational databases, the user can use a suffix for each of the above

parameters.

Following the pattern PARAMETER#DB, i.e URL2 will be the URL of the second database, URL3

will be the URL of the third database, etc.

In addition, the user can specify two other configuration parameters concerning the data ingestion

scripts to generate:

 MAX_QL_QUERIES_PER_FILE: a set of prepared QL queries will be generated at the end

of the Extraction Step. Executing these QL queries (see Step 3. Ingestion) will allow to

transfer the data from the input relational database(s) towards the Polystore, as soon as the

latter will be deployed. Parameter MAX_QL_QUERIES_PER_FILE allows the user to

specify the maximal number of QL queries per ingestion file.

 PREPARED_STATEMENTS_BOUND_ROWS: the user can specify the maximal number

of rows each prepared query to insert.

The Figure below provides an example of configuration file specifying the credentials of two input

relational databases to connect. A configuration file example is copied in the target directory

generated during the install phase, and can be edited by the user.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 101

Confidentiality: Public Distribution

To execute the Extraction Step, the user must use the files generated during the install phase (in the

target directory):

WINDOWS: data_ingestion.bat -extract extract.properties output

LINUX: bash data_ingestion.sh -extract extract.properties output

where extract.properties is the configuration file containing the input relational databases

credentials and output the directory in which the TML schema and the data ingestion scripts will be

generated at the end of the extraction.

Step 2. Deployment

As result of the Extraction step, a TyphonML schema (output/schema.tml) and a set of data

ingestion scripts (output/data/*.tql) are generated in the output directory:

D7.8 Integrated Platform - Final Version

Page 102 Version 1.2 28 July 2020

Confidentiality: Public Distribution

The Polystore deployment step simply consists in deploying a new Polystore by using the

TyphonDL tools (WP3). This process takes as input the TyphonML schema automatically extracted

at Step 1 (schema.tml). We refer to the WP3 deliverables for more details about the deployment

process and supporting tools.

Step 3. Ingestion

Once the new target Polystore has been created and deployed, the last step consists in executing the

data ingestion scripts (.tql) generated at Step 1.

The execution of those scripts also requires to specify the credentials necessary to connect the

Polystore service allowing to execute the prepared QL queries contained within the data ingestion

scripts. This information must be defined in the inject.properties file. Figure below gives an

example of structure for this configuration file.

The following parameters are required:

 POLYSTORE_SERVICE_URL: the url necessary to connect the Polystore service.

 POLYSTORE_SERVICE_USERNAME: the user login necessary to connect the Polystore

service.

 POLYSTORE_SERVICE_PASSWORD: the user password necessary to connect the

Polystore service.

To execute the Ingestion Step, the user must use the files generated during the installation phase (in

the target directory):

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 103

Confidentiality: Public Distribution

WINDOWS: data_ingestion.bat -inject inject.properties output/data

LINUX: bash data_ingestion.sh -inject inject.properties output/data

where inject.properties is the configuration file containing the Polystore service credentials and

output/data the directory in which the data ingestion scripts have been generated at the end of the

Extraction Step. Once the data ingestion is completed, the Polystore is populated and ready to use.

6.3.7 Analytics

6.3.7.1 Prerequisites

1) This guide assumes that you have already installed all the necessary tools to create and run a

Polystore (e.g., TyphonML, TyphonDL, etc.). That is, you have done the steps described in

Section 6.1.

2) You need to make sure that you have those updated (from their respective Eclipse update

sites and by doing a docker-compose pull) to their latest version. As a rule of thumb if you

haven‟t updated after 10
th

 of May 2020, you need to update to get the latest working version.

3) Start by creating the Polystore as described in the previous sections. Make sure that in the

appropriate step of the DL wizard you have checked the “Use Typhon Data Analytics”

option, as shown in the image below.

4) Run the Polystore.

D7.8 Integrated Platform - Final Version

Page 104 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Warning: The guide assumes that the Polystore is deployed using Docker Compose. The Polystore

and the analytics component have not yet been fully tested using a Kubernetes deployment.

6.3.7.2 Work with the Analytics Component

1) Download (if you don‟t have already done) Eclipse with Epsilon support from here:

https://www.eclipse.org/epsilon/download/

2) Download the analytics zip file from here: https://drive.google.com/file/d/12cZY1Gxt-

Qv6wCwu6Oa4jmd-IRAPH43R/view?usp=sharing

3) Unzip and import the two projects (named ac.york.typhon.analytics.examples.howto and

ac.york.typhon.analytics) into Eclipse by going to File  Import  Existing Projects

into Workspace

4) The ac.york.typhon.analytics.examples.howto project is an example project that has a

simple analytics scenario (TestAnalyticScenario class) and a runner (AnalyticsRunner

class) in it.

a. If you navigate to the pom.xml file you will see that it has a dependency to the

ac.york.typhon.analytics project.

b. You can either use this project to test analytic scenarios or you can create another

Maven project that has the same dependency (to the ac.york.typhon.analytics)

5) The ac.york.typhon.analytics project includes the analytics infrastructure. You don‟t

need to do anything with it. It should just be included as a dependency when you create

a new Analytics project, as described above.

Please note: The generated docker compose defines port 29092 for external (outside Docker) access

to the Kafka queue and port 9092 for internal (inside Docker) access. As this guide describes how

to write analytics in your local IDE, the configuration is set to access port 29092. If you want to

export the jar and run it inside Docker, then you need to open the

“resources/typhonAnalyticsConfig.properties” file and set the port in line 12 to 9092.

6.3.7.3 Write Analytics

1) Create a new maven project that has a dependency on the ac.york.typhon.analytics project.

Of course, you can instead use the example project

(ac.york.typhon.analytics.examples.howto) you have imported.

2) Create a new class (right click on the src folder  New  Class) that implements the

“IAnalyzer” interface. If you use the example project you will see that such a class already

exists (named “TestAnalyticScenario”).

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 105

Confidentiality: Public Distribution

3) The new class will include the method you need to implement called “analyze

(DataStream<Event> eventsStream). The eventsStream parameter are the PostEvent objects

arriving to the POST queue of the analytics architecture. You need to write flink code to

consume them and produce analytics of interest (more on this later).

4) In order to run the analytics code you need to create a main class which calls the classes that

include analytics. Create a new class (right click on the src folder  New  Class), give it

a name (e.g., RunnerClass) and include a main method in it (If you use the example project

this is the AnalyticsRunner class.). You need to create such a class only once for each

analytic scenario.

D7.8 Integrated Platform - Final Version

Page 106 Version 1.2 28 July 2020

Confidentiality: Public Distribution

a. You need to make a call to the class that includes an analytics scenario using the

ChannelBuilder.build(…) method as shown in the code below. This method takes as

a first parameter the name of the class that includes analytics code (e.g.,

HowToExampleClass) and as a second parameter the name of the Kafka topic from

which events should consumed. This should be AnalyticTopicType.POST always

when writing analytics for Typhon Post Events.

b. Remember to declare that your main class throws an exception (or surround the

ChannelBuilder methods with try…catch statements)

5) Run this main method as a Java Application. Your analytics code inside the

HowToExampleClass will start consuming PostEvents as these arrive in the Polystore. As

the analyze method‟s body is empty, this will do nothing. More on how to write analytics

code is described in the next section.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 107

Confidentiality: Public Distribution

IMPORTANT!!! Post events in Typhon are created every time a TyphonQL query is executed.

Thus, your code will produce results, if and only if you start using the Polystore and execute some

TyphonQL queries.

6.3.7.4 Writing Analytics Code with FLink

Flink is a distributed execution framework. By using its operators Flink can easily distribute you

code without requiring user‟s input/configuration. The goal of this guide is not to train people on

writing Flink code. There are plenty of resources on this online. The basic idea is that Flink works

with streams (in the context of the analytics component). Steams as the name suggests, provide

continuous real-time input to your programs. In the analytics component, the stream of events is the

“eventsStream” parameter is the analyse method. This is configured to automatically consume all

the events coming to the POST queue.

To consume streams using Flink, one should use Flink Operators. A comprehensive list of all the

available Flink operators is available here: https://ci.apache.org/projects/flink/flink-docs-

stable/dev/stream/operators/

This should be the starting point of anyone trying to use Flink as they contain a brief description

and an example of how to make them work. You will find yourself mostly having to use the filter

and map function (the first filters events based on a condition, the second is used to transform

objects to other forms). Experiment with these 2 first and then you can proceed to more complicated

operators. Below is a simple example that consumes Typhon PostEvents and produces at the end a

list of the credit card numbers that have expired. You can find the code into the

“HowToExampleClassWithSomeLogic” class of the “ac.york.typhon.analytics.examples.howto”

project. The example is based on an ECommerce Polystore example.

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/

D7.8 Integrated Platform - Final Version

Page 108 Version 1.2 28 July 2020

Confidentiality: Public Distribution

6.3.7.5 Write Authorisation Tasks

1) Create a new maven project that has a dependency on the ac.york.typhon.analytics project in

the same way created in step 3.1.

2) Create a new class (right click on the src folder  New  Class) that extends the

“GenericAuthorisationTask” abstract class.

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 109

Confidentiality: Public Distribution

3) The new class will include two methods you need to implement called “checkCondition

(Event event)” and “shouldIReject(Event event).” In the first you need to provide the logic

that decides if this authorisation task is responsible for checking the event passed as

parameter. For example, if this task is responsible for checking the validity of the credit card

used to place an order then the logic included here should filter and accept only such “insert

order” events. The second, should include the rejection logic. For example, include the logic

that rejects order events in which credit cards used have expired.

D7.8 Integrated Platform - Final Version

Page 110 Version 1.2 28 July 2020

Confidentiality: Public Distribution

4) Following steps 2 and 3 you can define more authorisation tasks that should be included in

the authorisation chain.

5) In order to run the authorisation chain that includes all the tasks, you need to create a main

runner class. We provide a tool that generates this runner class automatically.

a. Import the 3
rd

 Eclipse project (ac.york.typhon.analytics.authDSL) into your Eclipse

IDE.

b. Make sure “authDSL.ecore” has been registered by right-clicking on it and selecting

“Registering EPackage”.

c. Open the “chain.model” file. (you can preferably right-click on it, select “Open

With…” and select “Exeed Editor”. If “Exeed Editor” is not available select

“Other…” and search for “Exeed Editor” in the list.

d. Open the top element by clicking the grey arrow on the left

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 111

Confidentiality: Public Distribution

e. Click on the model element of type “Auth Chain” and navigate to the “proeprties”

eclipse view at the bottom. If the view is not available you need to click on Window-

>Show View->Properties. Provide the name of the package in the Maven project that

hosts the authorisation tasks you created before

f. For each authorisation task you created you need to repeat the following steps:

i. Right-click on the Auth Chain model element and select “New Child”->

Tasks Auth Task. This will create a new Auth Task model element

ii. Click on the new element created and navigate to the properties view.

Provide the name of the auth task. This must be the name of the class that

implements the logic for this task (i.e., the name you used in step 4.2)

iii. Repeat the same process for all the auth tasks you have in the authorisation

chain. When finished, re-visit each authorisation task and select its following

task in the chain. This is done by selecting the name of the next task in the

list of the “Next” property. For example, if your chain has 3 tasks named

Task A, Task B and Task C then highlight Task A in your model and select

from the list of the “Next” property, the model element named “Task B”. For

Task B, you need to set the “Next” property to “Task C”, etc. For the last task

in the chain (i.e., Task C in this example”) you leave the field empty.

g. When you are done creating the authorisation chain model right click on the file

“chainGenerator.launch” and select “Run As…” -> ”1 chainGenerator”. This will

generate the main class (in the “output” folder) that can be used as a runner for run

the authorisation chain.

D7.8 Integrated Platform - Final Version

Page 112 Version 1.2 28 July 2020

Confidentiality: Public Distribution

6) Move this class into your analytics/authorisation project in the same package where your

authorisation tasks reside. Run this main method as a Java Application.

IMPORTANT!!!

1) Events in Typhon are created every time a TyphonQL query is executed. Thus, your

code will produce results, if and only if you start using the Polystore and execute some

TyphonQL queries.

2) The current Polystore implementation provides a default authoriser that authorises all the

queries for execution. This means that if you need to include authorisation tasks as part

of one of your use case scenarios then you should not run the container that authorises

all the queries. This can be done by removing (or commenting out) the following service

from your docker-compose file

6.3.7.6 Execute Analytics Outside Eclipse

This section describes the execution of Typhon Analytics outside your Eclipse IDE, directly to a

Flink cluster deployed as part of the Typhon Polystore. This assumes required components are

deployed as described in the Typhon Quick Start Guide which results in a series of Docker

containers as depicted in the Docker Dashboard shown below:

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 113

Confidentiality: Public Distribution

First, to package your analytics code, add lines 24 to 55 in the screenshot below (or as defined in

this pastebin) to the pom.xml file of your analytics project (i.e. named

ac.york.typhon.analytics.examples.howto in the screenshot below) and adapt the mainClass XML

element content in line 43 accordingly. Note that if the AnalyticsRunner class would be located in a

package, such as my.package, then the mainClass element content would have to read

my.package.AnalyticsRunner.

https://pastebin.com/FfZEbUVR

D7.8 Integrated Platform - Final Version

Page 114 Version 1.2 28 July 2020

Confidentiality: Public Distribution

Second, either issue the command-line command mvn clean install from the directory of your

analytics project or right-click on the analytics project in Eclipse and select Run As > Maven install.

This will produce content in the target directory of your analytics project and in particular a file

ending in -jar-with-dependencies.jar (i.e. ac.york.typhon.analytics.examples.howto-0.0.1-

SNAPSHOT-jar-with-dependencies.jar in the above screenshot).

Third, use your browser to access the job submission page on the web-based UI of Apache Flink at

http://localhost:8081/#/submit. Next, hit the “+ Add New” button and choose the JAR file produced

in the previous step:

http://localhost:8081/#/submit

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 115

Confidentiality: Public Distribution

Forth, as soon as the previous step completes (i.e. uploading the JAR of your analytics project), the

Apache Flink web UI will display the uploaded file accordingly. Next, click on the name of the

uploaded file to (optionally) setup options and launch the program. The latter is achieved by hitting

the “Submit” button in the displayed web UI:

6.4 KNOWN ISSUES

The following are issues that are known (with workarounds where applicable) which the respective

component teams are actively working to fix:

 Docker needs more memory than 2GB.

 Polystore UI model upload page sometimes needs refresh after uploading consecutive mod-

els

 MariaDB credentials are not always set up correctly. This is a docker volume issue, and to

rectify you should remove the MariaDB volume via docker-compose rm –v (This will cause

loss of data)

D7.8 Integrated Platform - Final Version

Page 116 Version 1.2 28 July 2020

Confidentiality: Public Distribution

7. CONCLUSIONS

For the purposes of the Integrated Platform work Package (WP7), a fully working software

prototype was developed, tested and finalized. For this complete end-to-end implementation all

technical contributions delivered in previous work packages (2-6) were integrated into a single

platform. The Polystore Platform enables users to store and retrieve data from Hybrid Polystores

that have been entirely designed and deployed using tools developed for the Typhon project.

For the final version of the Integrated Platform, capabilities were to include the ability to

continuously evolve multiple segments of the schema and the relevant queries used. Additional

external tools were also supplied to compliment data ingestion operations. Furthermore, the

Analytics component was fully integrated, allowing users to provide custom built authorization

mechanisms and analysis of queries. The Continuous Evolution tool also makes use of this function

provide robust performance statistics and recommendations for potential improvements on the

schema used.

During the development process, a considerable number of technical challenges, regarding the

platform‟s performance, stability, extensibility, interoperability, and to a degree, scalability, were

tackled. Communication between the platform‟s core components has been tweaked and optimized

through a long series of implementation and evaluation cycles. The implementations of the

components‟ public interfaces were finalized, documented and developed.

The Continuous Integration and Distribution architecture was also evolved to accommodate the

development of existing and new components and tools. Changes were made across multiple CI/CD

component configurations to further optimize and streamline the development and deployment

process.

The RESTful API was modified to accommodate all changes in the integrated components, while

new services reflecting new features were made available. Additional integration of components not

previously completed were finalized in this version.

The web-based user interface that operates on top of the aforementioned RESTful API was

modified to be more lightweight, while also adding the new functionalities developed for the API.

The installation of the overall Polystore and its components were simplified. Except for optimizing

this process, all steps were documented into an extensive installation and usage guide.

Finally, the table below presents the status of the requirements fulfilled as requested by our Use

Case partners.

Table 1 Use Case requirements

Req.-ID Priority Description Status

87 SHALL The Polystore database shall offer a REST API for executing
queries and storing/retrieving data

Implemented

88 SHALL The Polystore database shall provide a command line tool for
configuration and management of the database instance

Implemented

89 SHOULD A web-based user interface should be provided for updating and
accessing data

Implemented

 D7.8 Integrated Platform - Final Version

28 July 2020 Version 1.2 Page 117

Confidentiality: Public Distribution

Req.-ID Priority Description Status

90 SHALL The Polystore interfaces shall be customisable, i.e., the possibility
to generate new APIs for added user functions shall be provided

Implemented

91 SHALL The generated API shall be able to access data stored in a
relational database

Implemented

92 SHALL The generated API shall be able to receive and send data
remotely

Implemented

93 SHALL The generated API shall be able to access data stored in an array
database

Implemented

94 SHALL The generated API shall be able to access data stored in a text
store

Implemented

95 SHALL The generated API shall provide HDFS file system access Implemented

96 SHALL The generated API shall provide Hive data access Implemented

97 MAY The Polystore database may provide an API to plug processing
components that are used to transform data when it's ingested or
retrieved

Implemented

