
Project Number 780251

D6.3 Hybrid Polystore Data Migration Tools

Version 1.0
29 June 2019

Final

Public Distribution

University of Namur

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, Nea Odos, The Open Group, University of L′Aquila, University of Namur,
University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the TYPHON Project Partners.

D6.3 Hybrid Polystore Data Migration Tools

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
Nea Odos The Open Group
Charalampos Daskalakis Scott Hansen
Themistocleous 87 Rond Point Schuman 6, 5th Floor
106 83 Athens 1040 Brussels
Greece Belgium
Tel: +30 210 344 7300 Tel: +32 2 675 1136
E-mail: cdaskalakis@neaodos.gr E-mail: s.hansen@opengroup.org
University of L′Aquila University of Namur
Davide Di Ruscio Anthony Cleve
Piazza Vincenzo Rivera 1 Rue de Bruxelles 61
67100 L’Aquila 5000 Namur
Italy Belgium
Tel: +39 0862 433735 Tel: +32 8 172 4963
E-mail: davide.diruscio@univaq.it E-mail: anthony.cleve@unamur.be
University of York Volkswagen
Dimitris Kolovos Behrang Monajemi
Deramore Lane Berliner Ring 2
York YO10 5GH 38440 Wolfsburg
United Kingdom Germany
Tel: +44 1904 325167 Tel: +49 5361 9-994313
E-mail: dimitris.kolovos@york.ac.uk E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Document Control
Version Status Date

0.1 Document outline 21 March 2019
0.5 First draft 12 June 2019
0.8 Full draft 21 June 2019
1.0 Final version after partner review 29 June 2019

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page iii

D6.3 Hybrid Polystore Data Migration Tools

Table of Contents

1 Introduction 1

1.1 Purpose of the deliverable . 1

1.2 Relationship to other TYPHON deliverables . 1

1.3 Contributors . 2

1.4 Structure of the deliverable . 2

2 Preliminaries 3

2.1 TyphonML . 3

2.2 TyphonQL . 4

2.2.1 Data Manipulation Language . 4

2.2.2 Data Definition Language . 5

3 General Architecture 6

3.1 Architecture Overview . 6

3.2 User interaction with the TyphonML editor . 8

3.3 Schema modification operators . 10

3.4 Source and target TyphonML models . 10

3.5 Interaction with TyphonQL . 10

3.6 Data access API regeneration . 11

4 Design 12

4.1 Internal function classes . 12

4.2 Internal Data Objects . 12

4.3 Input Parameters . 14

4.4 Interfaces to other work packages . 15

4.4.1 TyphonMLInterface . 16

4.4.2 TyphonQLInterface . 16

4.5 Schema Modification Operators . 18

5 Implementation 22

5.1 Generic operations . 22

5.2 Specific SMO operations . 22

6 Migrate Entity Scenario 26

7 Conclusions 28

Page iv Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Executive Summary

In the context of its Work Package 6, the TYPHON project aims to develop a methodology and technical
infrastructure to support the graceful evolution of hybrid polystores, where multiple, possibly overlapping
NoSQL and SQL databases may co-evolve in a consistent manner.

The proposed methodology should cover four main aspects: (1) polystore schema evolution: Allowing the
TyphonML polystore schema to evolve over time in response to changes in terms of data requirements; (2)
Polystore data migration: Allowing data to be migrated from one (version of) a datastore to another (version)
of a datastore; (3) polystore query migration: Allowing to automatically support the adaptation of existing
TyphonQL queries to an evolving polystore schema; (4) continuous polystore evolution: exploiting the poly-
store query events captured by the monitoring mechanisms developed in WP5 in order to recommend possible
polystore schema reconfigurations (be they intra-paradigm or inter-paradigm).

This deliverable covers the design and implementation of tool support for the two first aspects, namely the
evolution of the TyphonML polystore schema and the associated migration of data from one polystore schema
version to another.

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page v

D6.3 Hybrid Polystore Data Migration Tools

1 Introduction

According to the Work Package 6, the TYPHON project aims at developing a methodology and technical
infrastructure of hybrid polystore Data Migration tools in order to ensure an automated support of cross-
database and cross-paradigm data migration. It takes into account the evolution of hybrid polystores, where
multiple, NoSQL and SQL databases may co-evolve in a consistent manner.

The objective of this Work Package includes the development of methods and tools for:

1. migrating data across database paradigms and across database platforms (relational, NoSQL);

2. evolving the data organization and distribution in hybrid persistence architectures;

3. monitoring the actual use of hybrid data stores in order to inform the continuous evolution process.

In order to reach this purpose, the proposed approaches for addressing these different processes aim to be as
transparent as possible for the client applications.

The TYPHON polystore evolution tools will support four main aspects:

• Polystore schema evolution: Allowing the TyphonML polystore schema to evolve over time in response
to changes in terms of data requirements.

• Polystore data migration: Allowing data to be migrated from one version of a datastore to another
version of a datastore.

• Polystore query migration: Allowing au automated support of the adaptation of existing TyphonQL
queries to an evolving polystore schema.

• Continuous polystore evolution: exploiting the polystore query events captured by the monitoring mech-
anisms developed in WP5 in order to recommend possible polystore schema reconfigurations (be they
intra-paradigm or inter-paradigm).

1.1 Purpose of the deliverable

This document presents the work that has been done with respect to task 6.3 of Work Package 6, described as
follows in the TYPHON Description of Work:

Task 6.3: The focus of this task is the development of methods and tools for cross-database and cross-paradigm
data migration. This includes the automatically supported migration of data from one database schema to
another (cross-database migration), but also the migration of relational database fragments to NoSQL data
stores, and conversely (cross-paradigm migration).

1.2 Relationship to other TYPHON deliverables

In deliverable D6.1, we identified and compared existing approaches, techniques and tools to database schema
evolution and data migration. This literature review was an important source of inspiration when designing the
TYPHON schema evolution and data migration methodology presented deliverable D6.2.

The present deliverable present the schema evolution and migration tools, that implements the methodology
presented in deliverable D6.2. Those tools automate, in particular, the Schema Modification Operators (SMOs)
that are fully specified in deliverable D6.2.

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 1

D6.3 Hybrid Polystore Data Migration Tools

The TYPHON schema evolution and data migration approach is strongly related to the TyphonML data model-
ing language and its model editor (deliverables D2.1, D2.3 and D2.4) and to the TyphonQL DDL/DML query
language (deliverables D4.2 and D4.3).

1.3 Contributors

The main contributor of this deliverable is University of Namur. All project partners contributed to this deliv-
erable, by providing us with input and feedback on earlier versions of the schema evolution and data migration
tools, during the Typhon project meetings in Wolfsburg (7-8 March., 2019) and in Athens (6-7 June., 2019).

1.4 Structure of the deliverable

The remainder of this deliverable is structured as follows:

• Section 2 briefly introduces the main concepts needed to present our TYPHON polystore schema evo-
lution and data migratin architecture;

• Section 3 presents the global architecture of the schema evolution and data migration tools, and its
relationships with other TYPHON components;

• Section 4 describes the design of the schema evolution and data migration tools;
• Section 5 elaborates on the implementation aspects of those tools;
• Section 6 illustrates a data migration operator at the level of a complete TyphonML entity, based on a

concrete example;
• Section 7 summarizes the deliverable and anticipates the next steps of Work Package 6.

Page 2 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

2 Preliminaries

In this section, we briefly introduce the main concepts needed to present our TYPHON polystore schema evo-
lution architecture. We first describe TyphonML, the modeling language used to represent the data structures of
the TYPHON polystore in a platform-independent manner. Then, we describe TyphonQL, the query language
used to manipulate polystore data structures and data instances.

2.1 TyphonML

The TyphonML is the language used to specify a TYPHON polystore.

Following deliverable D2.1 we can identify two different levels of abstraction when designing the polystore
data structure by means of a TyphonML model. The first level is the conceptual level. This level details
the conceptual entities and their attributes, those can be of type dataTypes which can be either primitive or
complex.

The second level relates to the databases types, referred to as logical level in this document. It represents the
different platform-specific databases that will actually store the data instances of the conceptual entities.

Figure 1 shows the meta classes of the TyphonML modeling language taken from deliverable D2.3. A Ty-
phonML schema evolution consists in modifying instances of one of these meta classes or of their attributes.
Each type of modification corresponds to an operator such as add, remove, merge, update, etc. Each one of
these operators, modifying a specific object of a TyphonML schema potentially has impact on the data structure
or on the data instances of the polystore. The schema evolution and migration tool is in charge of propagating
those evolution impacts.

Figure 1: Main Metaclasses of TyphonML language taken from deliverable D2.3

Change Operators

The evolution operations are modeled using Change Operator meta class. Each evolution operation is a sub-
type of this meta class. Instances of these operators can be created by the user in the TyphonML editor using

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 3

D6.3 Hybrid Polystore Data Migration Tools

the evolution mode. The corresponding change operator instances are then saved in the model. When the
model is sent to the evolution and migration tool it reads the model and extracts the corresponding operator
in order to execute them. Figure 2 shows the meta classes of the available evolution operation available on an
Entity TyphonML object.

Figure 2: Metaclasses of Entity Change Operators from deliverable D2.3

2.2 TyphonQL

TyphonQL, the TYPHON query language is a unique language that allows the manipulation of data and data
structures of underlying databases of a TYPHON polystore. This generic language manipulates TyphonML
objects and compiles the query into native, platform-specific queries on the actual databases. The TyphonQL
language will be used by the schema evolution and migration tool in order to effectively implement the data
and structure changes implied by the evolution operators performed on top of the TyphonML schema.

2.2.1 Data Manipulation Language

In order to perform the read and write operations as well as performing the related data changes required by
schema modification operators, a platform-independent Data Manipulation Language (DML) will be offered by

Page 4 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

TyphonQL. This language will provide read, write, update, and delete operations on TyphonML entities. The
execution of these operations will be possible even when the underlying data are stored in different database
paradigms supported by TYPHON (i.e., relational, document-based, key-value stores, graph databases, etc.).

2.2.2 Data Definition Language

In order to perform the data structure changes propagating TyphonML schema modifications, a Data Definition
Language (DDL) will also be provided by the TyphonQL language. Create, update, and delete operations will
be provided at the level of most TyphonML conceptual objects (entities, attributes, identifiers and indexes).

Note that invoking this TyphonQL DDL does not necessarily imply structural changes applied to the underlying
databases. In case of relational and column-oriented databases, propagating a TyphonML schema modification
(e.g., adding an attribute to a TyphonML entity) will typically be propagated as data structure changes at the
physical database level (e.g., adding a column to the corresponding relational table). However when using
schema-less NoSQL databases (e.g., MongoDB), a TyphonML schema change may imply data changes (e.g.,
updating the value of an attribute) instead of data structure changes. In some specific cases, the TyphonML
schema changes may have no impact at all on the underlying database structures and contents (e.g Adding an
attribute to an entity relying on a document database).

As an example, let us consider the renaming of an TyphonML attribute. If the corresponding TyphonML
entity is mapped to a relational database table, the TyphonQL rename attribute operation will translate into
an alter table rename column command in SQL. The data structure will change but the database contents will
remain unchanged. In contrast, if the corresponding TyphonML entity is mapped to a MongoDB collection,
the TyphonQL rename attribute operation will translate into a rename operator. The latter will not alter the data
structure, but it will rather change documents data in the MongoDB collection, by replacing the old attribute
name with the new attribute name. In case of a key-value database, such an attribute renaming operation is
more complex to carry out as no specific native operator exists. The compilation of the TyphonQL rename
attribute command will therefore imply read, update and write operations.

Through the above examples we can observe that, in the general case, the compilation of platform-independent
TyphonQL DDL queries may require the use of native, platform-specific DDL and DML operations.

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 5

D6.3 Hybrid Polystore Data Migration Tools

3 General Architecture

In this section we describe how the evolution of a TYPHON polystore schema is carried out within the general
TYPHON architecture. The schema evolution and data migration tools (WP6) rely on the general TYPHON
approach to evolve the polystore data structures and migrate the polystore database contents. The evolution
tools interact with the tools developed in TYPHON work packages such as WP2 (TyphonML editor) and WP4
(TyphonQL compiler). In this section, we also specify the input parameters that the evolution and migration
tools need to receive, as well as the functions to invoke from the other TYPHON components.

Our general approach is guided by the entire process of an evolution in a database system, from the specification
of what each schema evolution operator exactly means to which artefacts are impacted by this evolution and
how to carry out such an adaptation.

Concerning the use case that we considered, it denotes a typical schema evolution which starts with a user
that modifies an existing, already deployed TyphonML model. The schema modifications requested by the
user are then propagated (when needed and when possible) to the actual polystore (relational or NoSQL) data
structures and to the data instances. The user will also be provided with a query transformation tool allowing
the migration of existing TyphonQL queries to the target TyphonML schema1.

3.1 Architecture Overview

As shown in Figure3, a holistic view about the architecture of our tool is shown. The evolution process includes
ten main steps. This process has been slightly modified from our previous deliverable (D6.2) in agreement with
the other project partners in order to guarantee general consistency and ease the integration of the TYPHON
components .

1The query migration tool will be developed in the next months, and will be presented in deliverable D6.4.

Page 6 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Figure 3: Global architecture and interactions of the evolution and migration tools.

The different steps are detailed as follows:

1. The user edits the TyphonML model using the specific evolution mode. He can manipulate Typhon
object using Change Operator defined in the TyphonML meta models (as described in D2.3.). Each
of these objects represents one of the Schema Modification Operator (SMO) defined in our previous
deliverable (D6.2). (Step 1)

2. Once the step 1 is completed, the model is saved as a .tml file (i.e., extension file). The TyphonML
module then produces an .xmi file that can be easily read by programs of the other work packages. (Step
2)

3. The TyphonML module uses the global polystore API in order to call the evolution tool. This invocation
is issued by means of the evolve function, and takes the source TyphonML and TyphonDL models as
input parameters. The TyphonDL model is used to verify that the physical structure needed are indeed
already present in the current running TyphonDL. This is a precondition to all evolution operators, if the
corresponding structure does not exist the evolution will be rejected. (Step 3)

4. The evolution tool receives the TyphonML model as an .xmi file. It reads it and extracts all the Change
Operators requested by the user. Each operator is recorded with the date and TyphonML model it applies
to. This allows the developer to easily retrieve all executed changes in order to apply them on a similar
TyphonML model running on a different environment.

5. The evolution tool applies the evolution operators and adapt the different polystore artefacts.

• After verifying the validity of the operator the TyphonML model is adapted to the model resulting
from the application of the schema change operator. (Step 4)

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 7

D6.3 Hybrid Polystore Data Migration Tools

• One may also need to modify the platform-dependent database structure, for example adding a new
table, or a new collection. This is done by generating and executing the corresponding TyphonQL
DDL function(s) starting from the source TyphonML model (Step 5 & 7).

• Finally the related data is migrated to comply with the the target TyphonML model. This also
consists of TyphonQL DML queries executed on a given TyphonML model. (Step 6 & 7)

6. The TyphonQL engine developed in Work Package 4 receives the TyphonQL DML and DDL queries and
is in charge of compiling them into native database queries for data structure and contents manipulation.
(Step 8)

7. Once all TyphonML change operators are executed they are saved to an external database and discarded
from the model by the evolution tool.

8. Finally the schema evolution tool calls back the TyphonML module to inform it that the evolution
process is complete and that the current polystore schema can be changed to the target TyphonML
model. If needed, the TyphonML module will eventually regenerate the Data Access API available to
the client applications. The adaptation of the client applications to the new data access API is out of the
scope of the TYPHON project.

3.2 User interaction with the TyphonML editor

Let us now recall how the schema modification operators will be expressed by the user through the TyphonML
editor.

We have identified two different ways for the user to express schema evolution changes, namely implicit and
explicit.

• Implicit: The user freely edits the TyphonML model during an evolution session. At the end of the
session, the TyphonML tool computes the difference between the source TyphonML model (the state of
the model at the start of the evolution session) and the target TyphonML model (the state of the model at
the end of the evolution session). From this difference the TyphonML tool derives a list of modification
operators that have been performed. This has the advantage of being transparent for the user. However,
it can be challenging to record all model editing changes (including undo’s), and to derive a correct,
minimal list of schema modification operators in all possible cases.

• Explicit: The TyphonML editor provides the user with an exhaustive list of Schema Modification Oper-
ators (SMOs). When she wants to modify the TyphonML model she has to explicitly choose one of the
available evolution operators. Some operators require input parameters that the user will also define in
the TyphonML editor. Obviously, the user may repeat this operation several times, by applying several
successive schema changes to the TyphonML model.

As already mentioned in deliverable D6.2, together with the other TYPHON R&D partners, we have chosen the
explicit way of expressing selection schema changes. The output result of this explicit selection will be a list of
SMOs that have to be propagated to the actual polystore data structures, to the data instances, and (optionally)
to existing TyphonQL queries. The TyphonML module will send this list of operators to the schema evolution
and migration tool, that will take care of the propagation operations.

Figure 4 shows the graphical representation in the evolution mode of the TyphonML editor for three Change
Operators.

Figure 5 represents the same Change Operators in the textual representation of the TyphonML model

Page 8 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Figure 4: Change Operators in TyphonML Editor.

Figure 5: Change Operators in TyphonML text representation.

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 9

D6.3 Hybrid Polystore Data Migration Tools

3.3 Schema modification operators

The polystore schema evolution operators that are supported by TYPHON have been described in detail in
deliverable D6.2. This list of operators includes, among others, add entity, remove attribute, migrate entity,
etc. Each of these operators requires specific input parameters in order to propagate the evolution to the
different impacted artefacts.

The evolution and migration tool implements the propagation of the different schema evolution operators
available to the user from the TyphonML editor. It provides a generic evolve function through a REST API.
This function takes as input a list of Schema Modification Operator objects. For each SMO object, the schema
evolution and migration tool will verify that the parameters are correct before executing the evolution operators.

3.4 Source and target TyphonML models

A TyphonML model includes two main parts that belong to two different levels of abstraction. The higher level
corresponds to the conceptual level, where entity types are described together with their attributes and with the
relationships that hold between them. This high-level representation is platform-independent. The lower level
belongs to a logical level of abstraction, where the conceptual entities are mapped with their actual database
representation (tables, collections, etc.). This level defines on which database system (relational database,
document-based, key-value store, etc.) each conceptual entity will be persisted.

For supporting the evolution process at least the current (source) TyphonML model and the target TyphonML
model (resulting from the application of the schema evolution operators to the source model) must be avail-
able as global variables. The target model will be an SMO parameter sent by the TyphonML module to the
evolution and migration tool. The TyphonQL module will also take both source and target TyphonML models
as (implicit) inputs to compile the DDL and DML queries sent by the schema evolution and migration tool to
propagate the TyphonML schema changes.

For example, when migrating a TyphonML entity E from a relational database table to a MongoDB collection
database, the evolution tool will send a read TyphonQL query on (expressed on the current TyphonML model
M1) to the TyphonQL module. This read query will be compiled into a SQL select statement. Then, the
evolution tool will send a TyphonQL write query, expressed on the target TyphonML model M2, where E is
linked to the MongoDB collection. This write statement will therefore be compiled into a MongoDB insert
statement and finally write on the related MongoDB collection. Detailed evolution scenarios that further
illustrate this mechanism will be illustrated in Section 6.

3.5 Interaction with TyphonQL

In the general case, the schema evolution and migration tool will need to use two instances of TyphonQL query
executor: one instance executing the TyphonQL queries on top of the current (source) TyphonML model, and
one instance executing the TyphonQL queries based on the target TyphonML model.

The TyphonQL queries will be generated by the schema evolution and migration tool from the received list
of SMOs and their input parameters. For propagating a given SMO to the the polystore data structures and
contents, several TyphonQL queries may be generated and executed.

For instance, splitting an entity into two entities requires (1) a TyphonQL DDL query to create an new entity
with its corresponding migrated attributes, (2) several TyphonQL DML queries to migrate the data from the
source entity attributes to the target entity attributes through read-write operations, (3) several TyphonQL DDL
queries to delete the migrated attributes from the source entity.

Page 10 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

3.6 Data access API regeneration

Finally the schema evolution tool calls back the TyphonML module to inform it that the evolution process is
complete and that the current polystore schema the polystore can be changed to the target TyphonML model. If
needed, the TyphonML module will eventually regenerate the Data Access API available to the client applica-
tions. The adaptation of the client applications to the new data access API is out of the scope of the TYPHON
project.

In Section 6 we illustrate the use of our schema evolution and data migration tool, by considering a concrete
cross-platform evolution example: the migration of a TyphonML entity from a database platform (relational)
to another (MongoDB).

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 11

D6.3 Hybrid Polystore Data Migration Tools

4 Design

In this section we present the design of the evolution and migration tool, as well as the global workflow that is
triggered when the TyphonML model including the list of requested schema changes is received via a call to
the generic evolve function. We also present the interactions with the components developed in the other work
packages and the different API functions involved in the process.

4.1 Internal function classes

Let us first describe below the different internal action classes defined in the evolution tool. Figure 6 shows the
model and main classes that are involved when treating a TyphonML Change Operator.

• RestController. This class is the interface between the evolution tool and other components of the
TYPHON polystore. It exposes the evolve function that takes two parameters. The first parameter is
a path to the source TyphonML model and the second parameter is a path for the saving of the final
TyphonML model. This function will read the source TyphonML model, extract the Change Operators
and convert each of them to the internal representation of a Schema Modification Operator (SMO) of
the evolution tool.

• EvolutionToolFacade. This class receives the extracted list of SMOs and the object representation of the
TyphonML model. Its responsibility is to ask the evolution tool to execute each SMO and then to save
to the given target path the final resulting TyphonML model.

• EvolutionToolService. This class corresponds to the core implementation of the evolution tool. It con-
sists of a series of specific functions, each corresponding to a given evolution operator. Those functions
are called by the EvolutionToolFacade. They take as parameters an SMO object that contains the re-
quired information to execute the evolution operator and the TyphonML representation object on which
to apply this operator. A new Model object is finally returned with the evolution changes applied. This
class and its methods are also in charge of propagating schema changes to the other polystore artefacts
such as the TyphonML model, the data, the platform-dependent structures and, in the near future, to
TyphonQL queries.

• TyphonMLInterface. All functions manipulating the TyphonML model are provided by this interface.
There are functions reading the model and making it easier to get specific Typhon objects such as
getEntityFromName(String entityName); and there are writing functions that create or adapt objects in
the TyphonML model.

• TyphonQLInterface. This interface provides high level functions to manipulate data and structures. In
the end they produce and execute TyphonQL DDL and DML queries.

• TyphonQLConnection. This interface is defined in deliverable D4.2. It provides functions allowing
one to execute TyphonQL queries. TyphonQL DML queries return results using the WorkingSet format
which is also defined in deliverable D4.2.

4.2 Internal Data Objects

This section describes the internal data objects used by the evolution and migration tool. Each objects contain
the attributes that the EvolutionService needs in order to evolve the schema, the data and data structures. We
implemented an Adapter pattern between our own data objects and the core objects of the TyphonML library
for two main reasons. First, the development of the evolution tool was done in parallel with the development

Page 12 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Figure 6: Main classes of the evolution tool.

of the TyphonML library. It was therefore more convenient to use interfaces that fit our requirements. Second,
this provides independent implementation of the evolution operator in the EvolutionService class. In case of
change in the core objects of the TyphonML library, only the adapters will have to be modified.

• EvolutionService. This class constitutes the core implementation of the evolution operators. It makes
the link between the internal data objects and the other modules’ interfaces described in section 4.1.

• SMO. This class is the internal object representing an evolution operator, it is the equivalent of
ChangeOperator in the TyphonML model. It contains the type of Typhon object, the specific evo-
lution operator that must be applied, as well as the user parameters required to evolve the polystore.
SMOs have been specified in detail in our previous deliverable D6.2.

• EntityDO. This class represents an TyphonML Entity Type. It contains the name, a map of the attributes
and the identifier.

• RelationDO. The relation domain data object requires information about the source and target Entities,
that are represented using EntityDO domain object as well. Containment, opposite and cardiniality are
the same information as defined in the TyphonML model.

• SMOAdapter. This class implements the SMO interface. It takes a ChangeOperator (defined by
the TyphonML library) as constructor parameter. Input parameters required by the EvolutionService
interface are set in the SMO object based on the TyphonML ChangeOperator attributes.

• EntityAdapter. Similarly to the SMOAdapter class. It implements EntityDO interface and allows one
to convert Entity TyphonML library objects.

• RelationAdapter. This class adapts Relation TyphonML library object to our RelationDO data object.

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 13

D6.3 Hybrid Polystore Data Migration Tools

• ChangeOperator. This class represents an evolution operator in the TyphonML meta model. This is the
object produced by the user when she uses the TyphonML editor in evolution mode as described and
illustrated in Figure 5.

• Model. The TyphonML library object representing the complete TyphonML model. This class is also
used as parameter of any evolution operator in the EvolutionService class.

• Entity. The TyphonML library Entity class.
• Relation. The TyphonML library Relation class.

For more detailed information about the TyphonML library, please refer to deliverable D2.3.

4.3 Input Parameters

In Table 1 we list the different parameters that are required by Schema Modification Operators supported by
the evolution tool. Those parameters are needed to propagate the changes to the TyphonML model, the data
structures and the data instances. Section 5.2 will list and describe those parameters with their corresponding
Schema Modification Operators.

Table 1: List of user input parameters for each supported SMO.
Parameter Name Parameter type Description
Attribute Attribute An attribute object with name and

datatype.
AttributeName string Name of an existing attribute.
DatabaseName string Name of a database, used to specify the

mapping of a newly created entity.
DatabaseType string The type of database (relationaldb,

documentdb,...), used to create a cor-
rect mapping in the TyphonML model.

Entity, FirstEntity, SecondEntity EntityDO An EntityDO object used to create a
new type in the TyphonML model.

EntityName string Name of an entity.
isOuterJoin boolean Used in merge SMO, true or false if the

data result is an outer join.
JoinAttributeFirst string Used in merge SMO, name of the join

attribute in the first entity.
JoinAttributeSecond string Used in merge SMO, name of the join

attribute in the second entity.
MergeEntityName string Name of the resulting merged entity.
NewEntityName string New name of the renamed entity.
Relation RelationDO A RelationDO object used to create a

new relation.
RelationName string Name of a relation.

Page 14 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Figure 7: Main classes of the evolution tool domain objects.

4.4 Interfaces to other work packages

We list and describe in this section the interfaces that manipulate other TYPHON artefacts, namely the Ty-
phonML model, the platform-dependent data structures and the database contents via the TyphonQL query

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 15

D6.3 Hybrid Polystore Data Migration Tools

language. The manipulation of the model is entirely handled by the evolution tool itself. In contrast, the adap-
tation of data structures and database contents required by the evolution operators are implemented by means
of the TyphonQL module (WP4). The evolution tool interacts with the TyphonQL engine by sending DDL and
DML queries issued by its TyphonQLInterface.

4.4.1 TyphonMLInterface

The TyphonMLInterface specifies functions to manipulate a Model object representing the full TyphonML
model. There are two types of methods in this interface: query methods that allow to query the model easily,
and manipulation methods that actually change the model. Query methods return particular TyphonML objects
inside the model, e.g., one can get an Entity, a Relation or verify that a certain Entity is not involved in any
relation. All these methods take a TyphonML Model object as parameter either to query it, to copy or to modify
it. Those methods are :

• Entity getEntityTypeFromName(String entityname, Model model); This method returns a TyphonML li-
brary Entity object with name entityname.

• boolean hasRelationship (String entityname , Model model); Returns true if the Entity of the given name
entityname is involved in a relation. This is used to prevent a deletion of entity type still used by
others.

• DatabaseType getDatabaseType(String entityname , Model model); Returns the DatabaseType TyphonML
library object of the Entity with entityname.

• Relation getRelationFromNameInEntity(String relationname , String entityname , Model model); Returns
the Relation corresponding to the given relationname in the Entity with given entityname.

• Database getDatabaseFromName(String dbname, Model model); Returns a Database object with the given
name dbname.

• String getDatabaseName(String sourceEntityName, Model model); Returns the name of the Database where
the given Entity with name sourceEntityName is mapped.

The methods manipulating the Model are self-describing and are listed in Figure 8.

4.4.2 TyphonQLInterface

The methods in this interface receive high-level objects and are in charge of compiling them into corresponding
TyphonQL DML queries for reading and writing data. Those methods can also call the TyphonQL DDL
methods that allow one to modify data and structures depending on the operation and the source TyphonML
model.

TyphonQL Data Manipulation Language functions The functions listed below are data manipulation functions
used by the evolution tool. They all eventually call a TyphonQL DML query as specified in deliverable D4.2 ,
query, insert or delete.

• WorkingSet readAllEntityData (String entityId , Model model); Retrieves all entity data, all attributes of
entity named entityId. This is compiled using the source model provided. The implementation uses
the TyphonQL query function.

• WorkingSet readEntityDataEqualAttributeValue (String sourceEntityName, String attributeName , String attributeValue , Model model);
High level function that reads data of a given entity and applies an equal where condition on given
attribute name with the given attribute value. It uses again the query function.

Page 16 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

Figure 8: TyphonMLInterface definition.

• WorkingSet readEntityDataSelectAttributes (String sourceEntityName, List<String> attributes , Model model);
Reads only the data of selected attributes from the entity sourceEntityName.

• WorkingSet deleteAllEntityData (String entityid , Model model); Deletes all data in Entity named
entityid on given TyphonML model. Uses TyphonQL delete function (D4.2).

• void deleteWorkingSetData(WorkingSet dataToDelete , Model model); Deletes the data contained in the
given Working Set dataToDelete.

• void writeWorkingSetData(WorkingSet workingSetData, Model model); Writes the given Working Set
workingSetData. Using insert TyphonQL function.

• WorkingSet readRelationship (RelationDO relation , Model model); Reads data related to the given rela-
tionship relation.

TyphonQL Data Definition Language functions The functions listed below are data definition language (DDL)
functions. The TyphonQL compiler is in charge of compiling the invocations of those functions into corre-

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 17

D6.3 Hybrid Polystore Data Migration Tools

sponding data structure changes and/or data adaptations. The resulting native database operations depend on
the underlying database the evolving TyphonML objects are mapped to.

• void createEntityType (EntityDO newEntity, Model model); Calls the TyphonQL DDL function that cre-
ates a new Entity newEntity. It will eventually create a new table (Relational model) or create a new
collection (document model) for entity newEntit in the polystore.

• void renameEntity(String oldEntityName, String newEntityName, Model model); Renames the entity
newEntityName to oldEntityName. This can lead to renaming of logical table or collection.

• void deleteEntityStructure (String entityname , Model model);Asks TyphonQL to delete the structure of
an entity type.

• void deleteAttributes (String entityname , List<String> attributes , Model model); Deletes data and
structures of the given attribute list in the given entity type.

• void createRelationshipType (RelationDO relation , Model model); Depending on the underlying
databases. Creates foreign key (for relational) or changes the way the data must be inserted (for
NoSQL).

• void deleteRelationship (RelationDO relation , boolean datadelete , Model model); Deletes the relation-
ship. Implies reference attribute deletion or foreign key constraint deletion for relation data model.

• void enableContainment(String relationName, String entityname , Model model); For NoSQL databases it
implies the replacement of the reference attribute with the full target entity object. This operator is not
available for relational databases.

• void disableContainment(String relationName, String entityname , Model model); Deletes data in the
source entity and replace it with a reference attribute to the target entity data.

• void changeCardinalityInRelation (String relationname , String entityname , CardinalityDO cardinality , Model model);

4.5 Schema Modification Operators

Table 2 lists all the Schema Modification Operators (SMOs) that can be performed. We list the TyphonML
object and the evolution operators that can be applied to it. We then provide a brief description of the SMO
and of its preconditions, if any. variableNames are the input parameters requested for the operator. They are
described in the implementation Table 3 and in the input parameter Table 4.3. Next are two columns indicating
if the operator has an impact on data and/or on data structures. More details about the operators are available
in deliverable D6.2.

Page 18 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D
6.3

H
ybrid

Polystore
D

ata
M

igration
Tools

Typhon Object Evolution Operator Description Preconditions Impact on
structure

Impact on
data

Entity Type Add A new entity is created in the TyphonML
model and the corresponding data structure
is created in the polystore.

An instance of the target database is
deployed by TyphonDL.

X -

Entity Type Remove The entity type is removed from the
schema. Any mapped database object
is also removed from the polystore (data
structure and instances are deleted).

The schema includes an entity with
the given name. This entity has no
relation with other entity types.

X X

Entity Type Rename The entity oldEntityName is renamed to
newEntityName. If the corresponding
polystore object (table, collection) has the
same name as oldEntityName, it is also
renamed as newEntityName.

The sourceModel schema
includes an entity named
oldEntityName.

X X

Entity Type Split Horizontal Migrates the instances of entity
sourceEntityName that has a given
value attributeV alue of their at-
tribute attributeName to a new
entity targetEntityName mapped
to a database type DatabaseType
on DatabaseName in structure
TargetLogicalName

sourceModel includes en-
tity sourceEntityName.
Databasename of type
Databasetype is running.

X X

Entity Type Split Vertical Migrates the instances of entity Entity
to two new entity FirstNewEntity and
SecondNewEntity. A new one-to-one
relationship RelationName is created be-
tween the two.

Databasename of type
Databasetype is running.

X X

Entity Type Merge FirstEntity and SecondEntity are
merged into one new entity named
MergeEntityName. It’s done based on
an equal join condition on attribute in first
entity named JoinAttributeF irst and
JoinAttributeSecond in the second en-
tity. isOuterJoin is set to true if the not
matched lines of SecondEntity must also
be included in the merged entity.

FirsEntity and SecondEntity
must be linked via a relation.
SecondEntity must not be in more
than one relation.

X X

29
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
19

D
6.3

H
ybrid

Polystore
D

ata
M

igration
Tools

Entity type Migrate Migrates the data structure and instances
of entity entityName to another database
platform databasetype with name
Databasename on a logical structure
named Targetlogicalname

Databasename of type
Databasetype is running.

X X

Relationship Type Add A relationship type between two entity
types is added.

Both TyphonML entities linked by
relation have explicitly declared
identifiers. The current data in-
stances of those entities respect the
cardinality constraints of relation.
If isContainment is set to true, and
relation is not a one-to-one re-
lationship, then the referencee en-
tity is not mapped to a relational
database (no denormalized data in
relational databases).

X

Relationship Type Remove A relationship between two entity types is
removed. Data structures and instances are
adapted accordingly

X X

Relationship Type Rename The relationship relation is renamed as
newName.

No existing relation with
newName exists in the same
source Entity.

X X

Relationship type Enable containment Enabling the TyphonML attribute of a rela-
tion, which specifies that the target entity is
contained in the source entity. This means
that the data instances of the referenced en-
tity are stored in the referencee data struc-
ture.

Source entity must have an attribute
containing the reference identifier
to the target entity. If relation
is not a one-to-one relationship,
then the referencee entity is not
mapped to a relational database
(no denormalized data in relational
databases).

X X

Page
20

V
ersion

1.0
C

onfidentiality:Public
D

istribution
29

June
2019

D
6.3

H
ybrid

Polystore
D

ata
M

igration
Tools

Relationship type Disable Containment Disabling the containment. The target en-
tity becomes standalone and references be-
tween the entities are added, following the
direction of the relationship and depending
on the underlying database platform. In a
relational database, the target entity refer-
ences the source entity. In a document-
oriented database, the source entity refer-
ences the target entity.

The target entity has a declared
identifier.

X X

Relationship type Enable opposite Creates a new relationship relationName
that is the opposite of the given relation,
source becomes target, and target becomes
source, cardinality is also reversed.

Existing data is not in conflict with
the new relation.

X X

Relationship type Disable opposite This deletes the opposite relation of the
given relation.

Relation exists. X X

Relationship type Change Cardinality The cardinality between two entities is
modified. The maximum and minimum
cardinalities can increase or decrease.

The data already conforms to the
new cardinality constraints.

Attribute Add An attribute Attribute is added to a
TyphonML Entity with Entityname as
name.

The entity has no attribute with the
same name as Attribute.

X -

Attribute Delete An attribute Attribute is deleted from an
entity with Entityname , i.e., its structure
and data instances.

The deleted attribute is not member
of an index nor of an identifier.

X X

Attribute Rename Attribute is renamed. AttributeName exists in
Entityname entity.

X X

Attribute Change type The data type of the input attribute is
changed.

The changed type cannot be an En-
tity type. This is supported by the
Add Relationship SMO.

X X

Table 2: Specification of the Schema Modification Operators.

29
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
21

D6.3 Hybrid Polystore Data Migration Tools

5 Implementation

In this section we present how the Schema Modification Operators are implemented in the EvolutionService
class. We first describe the generic high-level operations that we perform for each evolution operator. We then
present a summary table exposing the specific implementation details of each operator .

5.1 Generic operations

Once the EvolutionService class SMO operation function is called by the EvolutionFacade class, it goes
through a series of operations that are generic to each SMO :

1. V erifyInputParameters. We verify that the given SMO contains the necessary input parameters
in order to perform the corresponding evolution operations. For instance the creation of a new entity
requires a valid Entity object as well as information about the database mapping.

2. TyphonMLmodification. We proceed to create a copy of the given TyphonML model. Using the
TyphonMLInterface implementation class (described in 4.1) we modify this copy according to the re-
quested evolution of the model. The resulting adapted model is then returned to the calling function.

3. TyphonQLDDLStructurechanges. We call the TyphonQL interface corresponding to structure edit-
ing functions. This will issue a TyphonQL DDL query that will create or edit the physical structure
(creation of a table or collection, creation of attributes, modification of a type,...).

4. TyphonQLDMLReaddata. We read the data using a TyphonQL DML query on a TyphonQL engine
running on a given TyphonML model, which in this case is the source model given as input.

5. TyphonQLDMLWritedata. We may edit the WorkingSet data retrieved in order to fit the
target data model. This data is then written in the database using writing functions of the
TyphonQLInterface. A TyphonQL engine running on the target TyphonML produced at step three is
initiated, and we feed it with a writing query containing the (adapted) working set.

6. TyphonQLDMLDeletedata. We delete the migrated data instances that fit the source TyphonML
model but are not valid anymore.

7. TyphonQLDDLDeletestructure. If needed we delete the obsolete structures (tables, columns,...)
using TyphonQL DDL functions.

8. Returnfinalmodel. The final TyphonML model is returned to the EvolutionFacade where it can be
used as input model of subsequent evolution operators.

5.2 Specific SMO operations

In this section we present Table 3 which details, for each Schema Modification Operator, the different input
parameters required as well as the different operations that will be executed.

The first two columns TyphonObject & Evolutionoperator specify the TyphonML object and the evolution
operation, respectively. Together they uniquely identify the evolution operation to execute. Those attributes
are derived from the different Change Operator classes defined in TyphonML library. The SMOAdapter is in
charge of the variables initialization based on theChangeOperator object.

Page 22 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

The third column Input Parameter lists the input parameters needed to execute the SMO. Those parameters
are user-specified when applying a Change Operator in the TyphonML editor (once in evolution mode). Table
1 provides more details about those inputs.

TyphonML operations column lists all the operations applied on the TyphonML model. Those functions are
part of the TyphonMLInterface (see 4.4. They are used to query the model for verification and mainly to add,
modify or delete objects. It then produces the final model resulting of the application of the evolution operator.

TyphonQL DDL column lists functions that use the TyphonQLInterface to produce TyphonQL DDL statements.
Those may manipulate the data structures and the data instances depending on the underlying database model.
The TyphonQL compiler is in charge of translating these operations to specific native database statements. See
Section 4.4.2 for a detailed description of those functions.

TyphonQL DML lists the operations that requires data manipulation by the evolution tool. It reads particular
data using a TyphonQL DML query and optionally modifies the Working Set (the object representing the data
returned by TyphonQL engine) and it finally writes queries using a modified TyphonML model that will be
used in order to produce correct native queries.

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 23

D
6.3

H
ybrid

Polystore
D

ata
M

igration
Tools

Typhon Object Evolution Operator Input Parameter TyphonML operations TyphonQL DDL TyphonQL DML
Entity Type Add Entity

DatabaseName
Databasetype

createEntityType
createEntityMappping

createEntityType -

Entity Type Remove Entityname hasRelationship
deleteEntityType

deleteEntityStructure deleteAllEntityData

Entity Type Rename OldEntityName
NewEntityName

renameEntity renameEntity -

Entity Type Split Horizontal SourceEntityName
TargetEntityName
TargetLogicalName
DatabaseType
DatabaseName
AttributeName
AttributeValue

copyEntityType
createEntityMappping

- ws = readEntityDataWith-
EqualAttribute
writeWorkingSetData
(modified ws)
deleteWorkingSetData(ws)

Entity Type Split Vertical Entity
FirstEntity
SecondEntity
DatabaseName
Databasetype
RelationName

createEntityType(FirstEntity)
createEntityType(SecondEntity)
createRelationship
deleteEntityType

createEntityType
createRelationshipType

readEntitySelectAttributes
writeWorkingSetData

Entity Type Merge FirstEntity
SecondEntity
MergeEntityName
JoinAttributeFirst
JoinAttributeSecond
isOuterJoin

getCardinality
deleteRelationshipInEntity
hasRelationship
addAttribute
renameEntity

addAttribute
deleteRelationship
renameEntity

readRelationship
writeWorkingSetData

Entity type Migrate EntityName
DatabaseName
Databasetype
Targetlogicalname

deleteEntityMapping
createEntityMappping

createEntityType
deleteEntityStructure

readAllEntityData
writeWorkingSetData
deleteWorkingSetData

Relationship Type Add Relation createRelationship createRelationship
Relationship Type Remove Relationname

Entityname
deleteRelationshipInEntity deleteRelationshipInEntity

Relationship type Enable containment Relation getDatabaseType
enableContainment

enableContainment

Relationship type Disable Containment Relation disableContainment disableContainment

Page
24

V
ersion

1.0
C

onfidentiality:Public
D

istribution
29

June
2019

D
6.3

H
ybrid

Polystore
D

ata
M

igration
Tools

Relationship type Enable opposite Relation
RelationName

createRelationship
enableOpposite

createRelationship

Relationship type Disable opposite Relation deleteRelationshipInEntity deleteRelationshipInEntity
Relationship type Change Cardinality Relation

Cardinality
changeCardinalityInRelation changeCardinalityInRelation

Attribute Add Attribute
Entityname

addAttribute addAttribute

Attribute Delete Attribute
Entityname

removeAttribute removeAttribute

Attribute Rename Attributename
Entityname
NewNameAttribute

renameAttribute renameAttribute

Attribute Change type Attribute
Entityname

changeAttribute changeAttribute

Table 3: Parameters needed and operations executed by SMO.

29
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
25

D6.3 Hybrid Polystore Data Migration Tools

6 Migrate Entity Scenario

In this section we will illustrate in further details the execution of the Migrate Entity operator. This operator
will be instantiated in the context of a concrete example. We will show the changes applied to the TyphonML
model, the propagating operations performed on the polystore data structures and instances using TyphonQL.

Before modification: initial state of the polystore Let us start with the current TyphonML model. In
our example, this current model consists of several entity types. One entity type, User, is mapped to a relational
database MySQL table called clientsTable. Another one Order is mapped to a document database called
MongoDB. This is shown in the TyphonMl Editor in Figure 9.

Figure 9: Initial TyphonML model.

During modification: intermediate state of the polystore Let us now assume that the user decides -
via the TyphonML editor evolution mode- to apply the migrate operator on entity User, in order to migrate
the User instances towards a collection in a MongoDB database MongoDB. Figure 4 shows examples of
Change Operators in this evolution mode.

The TyphonML module then calls the schema evolution and migration tool via the evolve function of
RestController (see 4.1) and passes the TyphonML model including the migrate Change Operator (as in
figure 5.

The schema evolution and migration tool first reads the TyphonML model .xmi file and loads the Change Op-
erators. Then EvolutionToolFacade uses SMOAdapter class to transform ChangeOperator objects into
SMO objects. Each one of them is then sent and the corresponding function is called in EvolutionService.
It verifies the parameters given as input of the function. We also check that the current running TyphonDL
indeed contains the requested databases. If those preconditions are not met the evolution is declined and no-
tified to the user. If everything is correct the operator is applied, as detailed in Table 3 with functions in
TyphonMLInterface and TyphonQLInterface being executed. We illustrate this execution with a log
trace shown in Figure 10.

The first phase is the adaptation of the TyphonML model. Line 3-4 are in charge of creating the new mapping
of User, from clientsTable to userCollection.

The second phase consists of modifying the structures, the existing MongoDB document database must con-
tain a userCollection collection. This is the role of the TyphonQL DDL generated at lines 5-6.

Page 26 Version 1.0
Confidentiality: Public Distribution

29 June 2019

D6.3 Hybrid Polystore Data Migration Tools

The third phase concerns the adaptation of the data instances. The schema evolution and migration tool
reads the data from the entity type User using the TyphonQL query running on the initial TyphonML model
initialModel (line 7) into UserDataWorkingSet. This data is then rewritten to userCollection collec-
tion of the document database mMongoDB using the TyphonQL write statement on the produced TyphonML
model finalModel (line 8).

The last steps are the deletion of data in clientsTable using the TyphonQL DML delete function (line 9), and
the deletion of the table itself (lines 10-11).

1 [main] INFO com . typhon . e v o l u t i o n t o o l . s e r v i c e s . E v o l u t i o n S e r v i c e I m p l − V e r i f y i n g
i n p u t p a r a m e t e r f o r [ENTITY] − [MIGRATE] o p e r a t o r

2 [main] INFO . . . TyphonDLIn t e r f ace Imp l − V e r i f y i n g t h a t d a t a b a s e [MongoDB] of t y p e
[documentdb] i s r u n n i n g

3 [main] INFO . . . TyphonMLInte r face Impl . d e l e t e E n t i t y M a p p i n g − D e l e t e d a t a b a s e
mapping of e n t i t y t y p e [User] i n TyphonML

4 [main] INFO . . . TyphonMLInte r face Impl . c r e a t e D a t a b a s e − C r e a t i n g a mapping
D a t a b a s e [MongoDB] of t y p e [DOCUMENTDB] t o e n t i t y [User] mapped t o [
u s e r C o l l e c t i o n] i n TyphonML

5 [main] INFO . . . TyphonIn t e r f aceQLImpl . c r e a t e E n t i t y − C r e a t e e n t i t y [User] v i a
TyphonQL DDL query on TyphonML model [i n i t i a l _ M o d e l]

6 [main] INFO . . . TyphonQLConnect ionImpl − E x e c u t i n g TyphonQL DDL [TQLDDL CREATE
ENTITY User (name , surname)] on TyphonML [f i n a l _ M o d e l]

7 [main] INFO . . . TyphonQLConnect ionImpl − from User e s e l e c t e on TyphonML [
i n i t i a l _ M o d e l]

8 [main] INFO . . . TyphonQLConnect ionImpl − TyphonQL ’ i n s e r t ’ command working s e t :
UserDataWork ingSe t on TyphonML [f i n a l _ M o d e l]

9 [main] INFO . . . TyphonQLConnect ionImpl − TyphonQL ’ d e l e t e ’ command working s e t :
UserDataWork ingSe t on TyphonML [i n i t i a l _ M o d e l]

10 [main] INFO . . . TyphonIn t e r f aceQLImpl . d e l e t e E n t i t y − D e l e t e e n t i t y [User] v i a
TyphonQL DDL on TyphonML model on TyphonML [i n i t i a l _ M o d e l]

11 [main] INFO . . . TyphonQLConnect ionImpl − E x e c u t i n g TyphonQL DDL [TQLDDL DELETE
ENTITY User on TyphonML [i n i t i a l _ M o d e l]

Figure 10: Log of the Migrate Entity operator scenario.

After modification: final state of the polystore The final state of the polystore is shown in Figure 11.
The Client entity instances are still in the polystore, but they are now stored in a MongoDB collection. All
existing TyphonQL queries accessing the Client entity instances remain valid. They will now be compiled
into MongoDB statements (e.g., find) instead of SQL queries (e.g., select).

29 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 27

D6.3 Hybrid Polystore Data Migration Tools

Figure 11: Final state of the polystore, after applying the Migrate Entity operator.

7 Conclusions

In this deliverable, we presented the tools developed to support schema evolution and related data migration
in TYPHON hybrid polystores. We particularly focused on the general architecture of those evolution and
migration tools, their design and their implementation. We described the way the schema evolution operators
specified in deliverable D.6.2, are now implemented in the TYPHON WP6 component using a generic evolve
function that can be triggered from the evolution mode of the TyphonML editor. The schema evolution and data
migration tools currently support (1) the adaptation of the TyphonML model from a list of schema evolution
operators, (2) the adaptation of the underlying platform-specific data structures by exploiting the TyphonQL
DDL operators, (3) the migration of the data from the source to the target schema,

The next steps in WP6 include, among others: (1) the full integration of the schema evolution and migration
tools with the other TYPHON components, namely the TyphonML editor (WP2) and the TyphonQL engines
(WP4); (2) the development of the query migration tool; (3) the development of recommendation techniques
and tools that would automatically suggest polystore reconfigurations to the user based on the continuous
monitoring of the polystore; (4) systematic testing and evaluation of the WP6 components in collaboration
with the use case partners, (5) the dissemination of our research and development results to a wide audience.

Page 28 Version 1.0
Confidentiality: Public Distribution

29 June 2019

	Introduction
	Purpose of the deliverable
	Relationship to other TYPHON deliverables
	Contributors
	Structure of the deliverable

	Preliminaries
	TyphonML
	TyphonQL
	Data Manipulation Language
	Data Definition Language

	General Architecture
	Architecture Overview
	User interaction with the TyphonML editor
	Schema modification operators
	Source and target TyphonML models
	Interaction with TyphonQL
	Data access API regeneration

	Design
	Internal function classes
	Internal Data Objects
	Input Parameters
	Interfaces to other work packages
	TyphonMLInterface
	TyphonQLInterface

	Schema Modification Operators

	Implementation
	Generic operations
	Specific SMO operations

	Migrate Entity Scenario
	Conclusions

