
Project Number 780251

D6.4 Hybrid Polystore Query Evolution Tools

Version 1.0
20 December 2019

Final

Public Distribution

University of Namur

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L′Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the TYPHON Project Partners.

D6.4 Hybrid Polystore Query Evolution Tools

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
OTE SWAT.Engineering
Theodoros E. Mavroeidakos Davy Landman
99 Kifissias Avenue Science Park 123
151 24 Athens 1098 XG Amsterdam
Greece Netherlands
Tel: +30 697 814 7618 Tel: +31 633754110
E-mail: tmavroeid@ote.gr E-mail: davy.landman@swat.engineering
The Open Group University of L′Aquila
Scott Hansen Davide Di Ruscio
Rond Point Schuman 6, 5th Floor Piazza Vincenzo Rivera 1
1040 Brussels 67100 L’Aquila
Belgium Italy
Tel: +32 2 675 1136 Tel: +39 0862 433735
E-mail: s.hansen@opengroup.org E-mail: davide.diruscio@univaq.it
University of Namur University of York
Anthony Cleve Dimitris Kolovos
Rue de Bruxelles 61 Deramore Lane
5000 Namur York YO10 5GH
Belgium United Kingdom
Tel: +32 8 172 4963 Tel: +44 1904 325167
E-mail: anthony.cleve@unamur.be E-mail: dimitris.kolovos@york.ac.uk
Volkswagen
Behrang Monajemi
Berliner Ring 2
38440 Wolfsburg
Germany
Tel: +49 5361 9-994313
E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

Document Control
Version Status Date

0.1 Document outline 21 October 2019
0.4 First draft 30 November 2019
0.9 Full draft for partner review 16 December 2019
1.0 Updates from QA Review 20 December 2019

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page iii

D6.4 Hybrid Polystore Query Evolution Tools

Table of Contents

1 Introduction 1

1.1 Purpose of the deliverable . 1

1.2 Relationship to other TYPHON deliverables . 1

1.3 Contributors . 2

1.4 Structure of the deliverable . 2

2 Context 3

3 Query Migration 4

3.1 Query Migration Process . 4

3.2 Query Migration Rules . 4

3.2.1 SMOs on Entity . 5

3.2.2 SMOs on Attribute . 8

3.2.3 SMOs on Relationship . 11

4 Example Query Migration Scenario 15

5 Implementation 17

5.1 Tool Description . 17

5.2 User Guide . 17

6 Conclusions 20

Page iv Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

Executive Summary

In the context of its Work Package 6, the TYPHON project aims to develop a methodology and technical
infrastructure to support the graceful evolution of hybrid polystores, where multiple NoSQL and SQL databases
may jointly evolve in a consistent manner.

The proposed methodology should cover four main aspects: (1) polystore schema evolution: Allowing the
TyphonML polystore schema to evolve over time in response to changes in terms of data requirements; (2)
Polystore data migration: Allowing data to be migrated from one version of a polystore schema to another
version of a polystore schema; (3) polystore query migration: Allowing to automatically support the adaptation
of existing TyphonQL queries to an evolving polystore schema; (4) continuous polystore evolution: exploiting
the polystore query events captured by the monitoring mechanisms developed in WP5 in order to recommend
possible polystore schema reconfigurations (be they intra-paradigm or inter-paradigm).

This deliverable focusses on the third aspect of our evolution methodology, namely the automatically-supported
adaptation of TyphonQL queries to an evolving TyphonML polystore schema. We present the general method
and the tool we developed in order to support this query migration process.

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page v

D6.4 Hybrid Polystore Query Evolution Tools

1 Introduction

According to Work Package 6, the TYPHON project aims at developing a methodology and technical infras-
tructure of hybrid polystore Data Migration tools in order to ensure an automated support of cross-database
and cross-paradigm data migration. It takes into account the evolution of hybrid polystores, where multiple,
NoSQL and SQL databases may co-evolve in a consistent manner.

In order to reach this goal, the TYPHON polystore evolution tools aim to cover four main aspects:

• Polystore schema evolution: Allowing the TyphonML polystore schema to evolve over time in response
to changes in terms of data requirements.

• Polystore data migration: Allowing data to be migrated from one version of a polystore schema to
another.

• Polystore query migration: Allowing the adaptation of existing TyphonQL queries to an evolving poly-
store schema.

• Continuous polystore evolution: exploiting the polystore query events captured by the monitoring mech-
anisms developed in WP5 in order to recommend possible polystore schema reconfigurations (be they
intra-paradigm or inter-paradigm).

In deliverable D6.3, we have presented our data migration tool that aims at supporting the first two aspects,
namely polystore schema evolution and related data migration. This data migration tool supports (i) the adap-
tation of the TyphonML model starting from a list of schema evolution operators, (ii) the adaptation of the
underlying platform-specific data structures by exploiting the TyphonQL DDL operators, and (iii) the migra-
tion of the data from a source to a target schema, by exploiting the TyphonQL DML language.

In the present deliverable, we focus on the query migration step of our evolution methodology, the goal of
which is to support the adaptation of TyphonQL queries to an evolving TyphonML polystore schema. We
present the general method and the tool that we developed in order to support this query migration process.

1.1 Purpose of the deliverable

This document presents the work that has been done with respect to task 6.4 of Work Package 6, described as
follows in the TYPHON Description of Work:

Task 6.4: This task aims to develop a method and automated support for adapting TyphonQL queries to an
evolving polystore schema. The query adaptation mechanism may differ depending on the schema evolution
scenario considered (as identified in Task 6.2). A generative approach will be used to propagate the evolution
at the access API level. Transformational techniques will support the automated conversion of the TyphonQL
queries.

1.2 Relationship to other TYPHON deliverables

The present deliverable presents a query migration tool that aims at adapting queries under polystore schema
evolution.

Any polystore schema evolution scenario is expressed as a chain of Schema Modification Operators (SMOs).
Those operators are fully specified in deliverable D6.2 [6], and are integrated in the TyphonML modeling
language (presented in deliverables D2.3 [4] and D2.4 [5]).

The queries subject to migration are expressed in the TyphonQL language (presented in deliverables D4.2 [1]
and D4.3 [2]).

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 1

D6.4 Hybrid Polystore Query Evolution Tools

1.3 Contributors

The main contributor of this deliverable is University of Namur. All project partners contributed to this deliver-
able, by providing us with input and feedback on earlier versions of this deliverable and of the query migration
tool. A demo of this tool was given during the Typhon project meeting in Bremen (28-29 November 2019).

1.4 Structure of the deliverable

The remainder of this Deliverable is structured as follows:

• In Section 2, we briefly remind the context in which the query migration tool is used;
• Section 3 presents, for each TyphonML schema evolution operator, the query transformation rules fol-

lowed by the query migration tool when adapting TyphonQL queries;
• In Section 4, we illustrate the use of the query migration tool, by considering a schema evolution sce-

nario that involves a chain of schema evolution operators as well as a set of TyphonQL queries to
migrate;

• We further discuss the implementation of our query migration tool, and we provide a brief user guide in
Section 5;

• Section 6 provides concluding remarks and anticipates future work in Work Package 6.

Page 2 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

2 Context

The query migration tool is used in the context of the evolution of a TYPHON polystore. This tool should be
used after the schema evolution and data migration steps have been carried out. In other words, we make the
assumption that:

• the current polystore schema has been evolved from a source schema to a target schema, using a chain
of schema evolution operators (SMOs);

• the native data structures have been changed accordingly, using the TyphonQL DDL operators;
• the related data has been migrated towards the target polystore configuration, using the TyphonQL DML

language.

When using the query migration tool, the user gives as input (1) the source TyphonML schema, (2) the set
of schema modification operators applied to this source schema and (3) a set of existing TyphonQL queries,
expressed on top of the source schema. This set of input queries actually includes two subsets of queries:

• queries that are not impacted by the schema evolution scenario, i.e., they remain valid with respect to
the target chema;

• queries that are impacted by the schema evolution scenario, i.e;, they became invalid with respect to the
target schema.

The query migration tool mainly focuses on the second category of queries. It aims to automatically transform
those invalid queries, expressed on top of the source schema, into equivalent queries expressed on top of the
target schema.

Depending on the schema evolution scenario considered, this query transformation is not always possible. For
instance, if a TyphonML entity is deleted, any TyphonQL query that operates on this entity becomes invalid,
and there is no way to transform it into an equivalent query expressed on top of the target schema.

The query migration returns as output a set of queries, with an annotating comment for each output query, with
4 possible cases:

• UNCHANGED: the input query has not been changed since it remains valid with respect to the target
schema;

• MODIFIED: the input query has been transformed into an equivalent output query, expressed on top of
the target schema;

• WARNING: the output query (be it unchanged or transformed) is valid with respect to the target schema,
but it may return a different result set;

• BROKEN: the input query has become invalid, but it cannot be transformed into an equivalent query
expressed on top of the target schema.

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 3

D6.4 Hybrid Polystore Query Evolution Tools

3 Query Migration

In this section, we first describe the general architecture of the Query Migration Tool (Section 3.1). Then,
we present the different transformation rules that our Query Migration tool follows according to deliverable
D6.2 [6] each schema modification operator (Section 3.2).

3.1 Query Migration Process

The process followed by the Query Migration Tool is shown at Figure 3.1. The tool takes three different
inputs: (i) the source TyphonML polystore schema, (ii) a set of TyphonQL queries expressed on top of the
source TyphonML polystore schema, and (iii) a list of Schema Modification Operators (SMOs) (see deliverable
D6.2 [6]) applied to the source TyphonML polystore schema. Based on those inputs, our Query Migration tool
aims at adapting the input TyphonQL queries to the target polystore schema, i.e., the schema obtained by
applying the SMOs to the source polystore schema.

Figure 1: Overview of Query Migration Process

As output, a set of output TyphonQL queries is produced by the query migration tool. Each of the output
queries belongs to one of the four possible categories of output queries: (i) Unchanged queries, (ii) Modified
queries, (iii) Modified queries with Warning or (iv) Broken queries.

3.2 Query Migration Rules

In this section, we specify and illustrate the transformation rules, according to which a set of TyphonML-to-
TyphonML schema transformations are propagated as corresponding Query Migration rules defined on top of
the TyphonQL query language.

The Query Migration Tool is able to (i) identify queries that could not be transformed (Broken queries), (ii)
identify queries that remain valid and do not require any adaptation (Unchanged queries), and (iii) adapt queries
that can be transformed into equivalent queries expressed on top of the target schema (Modified queries). The
tool also provides the user with useful warnings in case an output query has a slightly different behavior that
the corresponding input query (Modified with warning queries).

For each schema modification operator (SMO), we successively present:

• the schema modification operator;

Page 4 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

• the source and target polystore schemas in TyphonML textual form;
• corresponding query transformation rules, illustrating the way the related TyphonQL queries are trans-

formed.

3.2.1 SMOs on Entity

We present below the transformation rules related to the schema modification operators applied to TyphonML
entities.

Entity Add

• Schema modification operator: add entity E
• Schema modification illustration:

1 entity E2 {

2 Attr1: String

3 }

4 changeOperators[add entity E1]

Listing 1: Source schema

1 entity E2 {

2 Attr1: String

3 }

4 entity E1 {

5 }

Listing 2: Target schema

• Query transformation: Since, by definition, the new entity E1 is not used by any of the existing input
queries, the latter remain unchanged.

Entity Remove

• Schema modification operator: remove entity E
• Schema modification illustration:

1 entity E1 {

2 Attr1: String

3 }

4 entity E2 {

5 ...

6 }

7 changeOperators[remove entity E1]

Listing 3: Source schema

1 entity E2 {

2 ...

3 }

Listing 4: Target schema

• Query transformation: An existing entity E1 with an attribute Attr1 is removed from the polystore
schema. Consequently, all the TyphonQL queries referencing entity E1 have become invalid. Let us
consider the following input TyphonQL queries, manipulating instances of entity E1:

1 from E1 e select e.Attr1,

2 insert E1 {Attr1: "dummy"},

3 delete E1 e where e.Attr1 == "dummy",

4 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

The tool identifies these queries as broken and generates a corresponding warning in order to inform the
user that entity E1 has been removed, making the queries invalid.

1 BROKEN

2 #@ Entity E1 removed. This query is broken @#

3 from E1 e select e.Attr1,

4

5 BROKEN

6 #@ Entity E1 removed. This query is broken @#

7 insert E1 {Attr1: "dummy"},

8

9 BROKEN

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 5

D6.4 Hybrid Polystore Query Evolution Tools

10 #@ Entity E1 removed. This query is broken @#

11 delete E1 e where e.Attr1 == "dummy",

12

13 BROKEN

14 #@ Entity E1 removed. This query is broken @#

15 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

Entity Rename

• Schema modification operator: rename entity E1 as E2
• Schema modification illustration:

1 entity E1 {

2 Attr1: String

3 }

4 changeOperators[rename entity E1 as E2]

Listing 5: Source schema

1 entity E2 {

2 Attr1: String

3 }

Listing 6: Target schema

• Query transformation: Let us consider the following input TyphonQL queries:
1 from E1 e select e.Attr1,

2 insert E1 {Attr1: "dummy"},

3 delete E1 e where e.Attr1 == "dummy",

4 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

The Query Migration tool identifies all the TyphonQL queries referencing the old entity name E1 and
adapt those queries by replacing this name with the new entity name E2.

1 MODIFIED

2 from E2 e select e.Attr1,

3

4 MODIFIED

5 insert E2 {Attr1: "dummy"},

6

7 MODIFIED

8 delete E2 e where e.Attr1 == "dummy",

9

10 MODIFIED

11 update E2 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

Entity Merge

• Schema modification operator: merge entities E1 E2 as EMerged
• Schema modification illustration:

1 entity E1 {

2 Attr1: String

3 }

4 entity E2 {

5 Attr2: String

6 }

7 changeOperators[merge entities E1 E2 as EMerged]

Listing 7: Source schema

1 entity EMerged {

2 Attr1: String

3 Attr2: String

4 }

Listing 8: Target schema

• Query transformation: When two entities E1 and E2 are merged into a new entity EMerged, the
Query Migration tool considers all TyphonQL queries related to at least one of those entities.

1 from E1 e1 select e1.Attr1,

2 from E1 e1, E2 e2 select e2.Attr2 where e1.relation1 == e2, e2.Attr2 == "dummy",

3 insert E1 {Attr1: "dummy"},

4 delete E1 e where e.Attr1 == "dummy",

5 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

Page 6 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

Some queries can be transformed, with a warning indicating that the behavior of the output query may
differ from the behavior input query. Some other queries, like insert queries, have become invalid and
are marked as broken.

1 WARNING

2 #@ Query return a different QuerySet : EMerged contains attributes from E1 and E2 @#

3 from EMerged e1 select e1.Attr1,

4

5 WARNING

6 #@ Query return a different QuerySet : EMerged contains attributes from E1 and E2 @#

7 from EMerged e1 select e1.Attr2 where e1.Attr2 == "dummy",

8

9 BROKEN

10 #@ E1 and E2 merged. @#

11 insert EMerged {Attr1: "dummy"},

12

13 WARNING

14 #@ E1 and E2 merged. Delete will erase more information than before @#

15 delete EMerged e where e.Attr1 == "dummy",

16

17 MODIFIED

18 #@ E1 and E2 merged. @#

19 update EMerged e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

Entity Split

• Schema modification operator: split entity vertical E to E2 attributes:["E.B"]
• Schema modification illustration:

1 entity E {

2 A : String

3 B : String

4 }

5 changeOperators

6 [split entity vertical E to E2 attributes:["E.B"]]

Listing 9: Source schema

1 entity E {

2 A : String

3 }

4 entity E2 {

5 B : String

6 to_E -> E [1]

7 }

Listing 10: Target schema

• Query transformation: Let us consider the following TyphonQL input queries, manipulating instances
of entity E, that has been split into two entities E and E2 and a new relationship to_E between them.
Attribute A remains an attribute of entity E, while attribute B is now an attribute of entity E2.

1 from E e select e,

2 from E e select e.A,

3 from E e select e.B,

4 insert E {A: "dummy", B: "dummy"},

5 delete E e where e.A == "dummy",

6 update E e where e.A == "dummy" set {A: "foobuzz"}

Select queries manipulating entity E can generally be transformed, but a warning is generated to indicate
that the output query may return a different result set. In the more simple cases, this transformation
consists of renaming the entity name E into E2, depending on the attributes manipulated by the query.
In more complex cases, the output query relies on a join query between the new entities E1 and E2,
based on relationship to_E. In contrast, insert, delete and update queries are generally considered as
broken, since in all cases, they cannot be replaced with a single equivalent query expressed on top of the
target schema.

1 WARNING

2 #@ Entity E split into E, E2 @#

3 from E e, E2 e2 select e, e2 where e2.to_E == e,

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 7

D6.4 Hybrid Polystore Query Evolution Tools

4

5 WARNING

6 #@ Entity E split into E, E2 @#

7 from E e select e.A,

8

9 WARNING

10 #@ Entity E split into E, E2 @#

11 from E2 e2 select e2.B,

12

13 BROKEN

14 #@ Entity E split into E, E2 @#

15 insert E {A: "dummy", B: "dummy"},

16

17 BROKEN

18 #@ Entity E split into E, E2 @#

19 delete E e where e.A == "dummy",

20

21 BROKEN

22 #@ Entity E split into E, E2 @#

23 update E e where e.A == "dummy" set {A: "foobuzz"}

Entity Migrate

• Schema modification operator: migrate E1 to dbName
• Schema modification illustration:

1 entity E1 {

2 Attr1 : Date

3 Attr2 : int

4 }

5 relationaldb relationDB {

6 tables {

7 table{

8 E1Table: E1

9 }

10 }

11 }

12 documentdb DocumentDatabase {

13 }

14 changeOperators [migrate E1 to DocumentDatabase]

Listing 11: Source schema

1 entity E1 {

2 Attr1 : Date

3 Attr2 : int

4 }

5 relationaldb relationDB {

6 }

7 documentdb DocumentDatabase {

8 collections {

9 E1Collections: E1

10 }

11 }

Listing 12: Target schema

• Query transformation: The migrate operator enables the migration of data structure and instances of
an entity E to another database platform, in the above example, from a relational table to a MongoDB
collection. All TyphonQL queries that access entity E1 remain valid. They are therefore left unchanged
by the Query Migration tool.

3.2.2 SMOs on Attribute

In this section, we present the query transformation rules corresponding to the change operators that relate to
TyphonML attributes.

Attribute Add

• Schema modification operator: add attribute A : AType to E

Page 8 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

• Schema modification illustration:
1 entity E1 {

2 Attr1: String

3 }

4 changeOperators[add attribute Attr2 : String to E1]

Listing 13: Source schema

1 entity E1 {

2 Attr1: String

3 Attr2: String

4 }

Listing 14: Target schema

• Query transformation: Let us consider the following input TyphonQL queries, manipulating entity E1:
1 from E1 e select e.Attr1,

2 insert E1 {Attr1: 10},

3 delete E1 e where e.Attr1 == 15,

4 update E1 e where e.Attr1 == 10 set {Attr1: 15}

Since a new attribute Attr2 has been added to entity E1, some select queries may return a different
result set, hence a corresponding warning. Update queries may remain unchanged, insert queries are
considered as broken due to the missing attribue value, while delete queries remain valid but require a
warning to the user.

1 WARNING

2 #@ Attribute Attr2 added to E1. Result of the query may have changed @#

3 from E1 e select e.Attr1,

4

5 BROKEN

6 #@ Attribute Attr2 added to E1. Insert is broken @#

7 insert E1 {Attr1: 10},

8

9 WARNING

10 #@ Attribute Attr2 added to E1. You may delete more information than expected @#

11 delete E1 e where e.Attr1 == 15,

12

13 UNCHANGED

14 update E1 e where e.Attr1 == 10 set {Attr1: 15}

Attribute Remove

• Schema modification operator: remove attribute "E.A"
• Schema modification illustration

1 entity E1 {

2 Attr1 : String

3 Attr2 : int

4 }

5 changeOperators[remove attribute "E1.Attr2"]

Listing 15: Source schema

1 entity E1 {

2 Attr1: String

3 }

Listing 16: Target schema

• Query transformation: Let us consider the following input TyphonQL queries, manipulating instances
of the E1 entity:

1 from E1 e select e.Attr2,

2 insert E1 {Attr2: 10},

3 delete E1 e where e.Attr2 == 15,

4 update E1 e where e.Attr2 == 10 set {Attr1: 10},

5 from E1 e select e where e.Attr1 == "test",

6 update E1 e where e.Attr1 == "dummy" set {Attr1: "test"}

Since attribute Attr2 has been removed from entity E1 all TyphonQL queries explicitly referencing
Attr2 are no longer valid, and are reported as broken. Other queries may remain unchanged but require
a warning indicating that they might differ from the input queries in terms of their result set or execution
impact.

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 9

D6.4 Hybrid Polystore Query Evolution Tools

1 BROKEN

2 #@ Attribute E1.Attr2 removed @#

3 from E1 e select e.Attr2,

4

5 BROKEN

6 #@ Attribute E1.Attr2 removed @#

7 insert E1 {Attr2: 10},

8

9 BROKEN

10 #@ Attribute E1.Attr2 removed @#

11 delete E1 e where e.Attr2 == 15,

12

13 BROKEN

14 #@ Attribute E1.Attr2 removed @#

15 update E1 e where e.Attr2 == 10 set {Attr1: 10},

16

17 WARNING

18 #@ Query result might differ : Attribute E1.Attr2 removed @#

19 from E1 e select e where e.Attr1 == "test",

20

21 WARNING

22 #@ Query result might differ : Attribute E1.Attr2 removed @#

23 update E1 e where e.Attr1 == "dummy" set {Attr1: "test"}

Attribute Rename

• Schema modification operator: rename attribute "E.A" to NewName
• Schema modification illustration:

1 entity E1 {

2 Attr1 : String

3 Attr2 : int

4 }

5 changeOperators

6 [rename attribute "E1.Attr1" to NewAttributeName]

Listing 17: Source schema

1 entity E1 {

2 NewAttributeName: String

3 Attr2 : int

4 }

Listing 18: Target schema

• Query transformation: The Query Migration tool identifies all TyphonQL queries referencing the old
attribute name Attr1, as it is the case for the following input queries:

1 from E1 e select e.Attr1,

2 insert E1 {Attr1: "dummy"},

3 delete E1 e where e.Attr1 == "dummy",

4 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"}

The tool then renames attribute "E1.Attr1" as NewAttributeName in all those queries, as follows:
1 MODIFIED

2 from E1 e select e.NewAttributeName,

3

4 MODIFIED

5 insert E1 {NewAttributeName: "dummy"},

6

7 MODIFIED

8 delete E1 e where e.NewAttributeName == "dummy",

9

10 MODIFIED

11 update E1 e where e.NewAttributeName == "dummy" set {NewAttributeName: "foobuzz"}

Attribute Change Type

• Schema modification operator: change attribute "E.A" type NewType

Page 10 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

• Schema modification illustration
1 entity E1 {

2 Attr1 : String

3 Attr2 : int

4 }

5 changeOperators[change attribute "E1.Attr1" type Date]

Listing 19: Source schema

1 entity E1 {

2 Attr1 : Date

3 Attr2 : int

4 }

Listing 20: Target schema

• Query transformation: The Query Migration tool identifies all the TyphonQL queries explicitly refer-
encing the updated attribute Attr1.

1 from E1 e select e.Attr1,

2 insert E1 {Attr1: "dummy"},

3 delete E1 e where e.Attr1 == "dummy",

4 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"},

5 from E1 e select e where e.Attr2 > 10

The general structure of those TyphonQL queries remains valid, but a warning is provided in order to
remind the user to check the conformance of the input values used for the Attr1 attribute, as well as the
type of the related host program variables.

1 WARNING

2 #@ The type of the attribute Attr1 from E1 change @#

3 from E1 e select e.Attr1,

4

5 WARNING

6 #@ The type of the attribute Attr1 from E1 change @#

7 insert E1 {Attr1: "dummy"},

8

9 WARNING

10 #@ The type of the attribute Attr1 from E1 change @#

11 delete E1 e where e.Attr1 == "dummy",

12

13 WARNING

14 #@ The type of the attribute Attr1 from E1 change @#

15 update E1 e where e.Attr1 == "dummy" set {Attr1: "foobuzz"},

16

17 WARNING

18 #@ The type of the attribute Attr1 from E1 change @#

19 from E1 e select e where e.Attr2 > 10

3.2.3 SMOs on Relationship

In this section, we present the query transformation rules corresponding to schema modification operators on
TyphonML relationships.

Relationship Add

• Schema modification operator: add relation relName to E1 -> E2
• Schema modification illustration:

1 entity E1 {

2 Attr1 : String

3 relation1 -> E2

4 }

5 entity E2 {

6 Attr2 : String

7 }

8 changeOperators[add relation relation2 to E1 -> E2]

Listing 21: Source schema

1 entity E1 {

2 Attr1 : String

3 relation1 -> E2

4 relation2 -> E2

5 }

6 entity E2 {

7 Attr2 : String

8 }

Listing 22: Target schema

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 11

D6.4 Hybrid Polystore Query Evolution Tools

• Query transformation: Let us consider the following input TyphonQL queries:

1 from E1 e1 select e1.relation1,

2 from E1 e1 select e1 where e1.relation1,

3 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy"

Those input queries are left unchanged by the Query Migration tool, since they remain valid despite the
new relation relation2 that has been added between E1 and E2.

1 UNCHANGED

2 from E1 e1 select e1.relation1,

3

4 UNCHANGED

5 from E1 e1 select e1 where e1.relation1,

6

7 UNCHANGED

8 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy"

Relationship remove

• Schema modification operator: remove relation "E.relName"
• Schema modification illustration:

1 entity E1 {

2 Attr1 : String

3 relation1 -> E2

4 }

5 entity E2 {

6 Attr2 : String

7 }

8 changeOperators[remove relation "E1.relation1"]

Listing 23: Source schema

1 entity E1 {

2 Attr1 : String

3 }

4 entity E2 {

5 Attr2 : String

6 }

Listing 24: Target schema

• Query transformation: Relation Attr1 has been removed from entity E1. Let us consider the following
input TyphonQL queries, which explicitly refer to the deleted relation:

1 from E1 e1 select e1.relation1,

2 from E1 e1 select e1 where e1.relation1,

3 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy"

All those TyphonQL queries have become invalid, and are therefore considered as broken by the Query
Migration tool:

1 BROKEN

2 #@ The relation relation1 was removed @#

3 from E1 e1 select e1.relation1,

4

5 BROKEN

6 #@ The relation relation1 was removed @#

7 from E1 e1 select e1 where e1.relation1,

8

9 BROKEN

10 #@ The relation relation1 was removed @#

11 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy"

Relationship rename

• Schema modification operator: rename relation "E1.relName1" as relName2

Page 12 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

• Schema modification illustration:
1 entity E1 {

2 Attr1 : String

3 relation1 -> E2

4 }

5 entity E2 {

6 Attr2 : String

7 }

8 changeOperators

9 [rename relation "E1.relation1" as relation2]

Listing 25: Source schema

1 entity E1 {

2 Attr1 : String

3 relation2 -> E2

4 }

5 entity E2 {

6 Attr2 : String

7 }

Listing 26: Target schema

• Query transformation: The Query Migration tool identifies all the TyphonQL queries referencing the
old relationship name relation1, as it is the case for the following queries:

1 from E1 e1 select e1.relation1,

2 from E1 e1 select e1 where e1.relation1,

3 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy"

The tool then adapts those queries by replacing the outdated relationship name relation1 with the new
relationship name relation2.

1 MODIFIED

2 from E1 e1 select e1.relation2,

3

4 MODIFIED

5 from E1 e1 select e1 where e1.relation2,

6

7 MODIFIED

8 from E1 e1 select e1 where e1.relation2.Attr2 == "dummy"

Relationship change cardinality

• Schema modification operator: change cardinality "E.relName" as relCardinality
• Schema modification illustration:

1 entity E1 {

2 Attr1 : String

3 relation1 -> E2 [*]

4 }

5 entity E2 {

6 Attr2 : String

7 }

8 changeOperators

9 [change cardinality "E1.relation1" as 0..*]

Listing 27: Source schema

1 entity E1 {

2 Attr1 : String

3 relation1 -> E2 [0..*]

4 }

5 entity E2 {

6 Attr2 : String

7 }

Listing 28: Target schema

• Query transformation: The cardinality of the relation between the entities E1 and E2 has been modified.
Let us consider the following input TyphonQL queries:

1 from E1 e1 select e1.relation1,

2 from E1 e1 select e1 where e1.relation1,

3 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy",

4 delete E1 e where e.relation1 == "5"

The structure of those queries remain valid, but the user is warned that they queries may now have a
different behavior.

1 WARNING

2 #@ Cardinality of relation relation1 as changed to 0..* @#

3 from E1 e1 select e1.relation1,

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 13

D6.4 Hybrid Polystore Query Evolution Tools

4

5 WARNING

6 #@ Cardinality of relation relation1 as changed to 0..* @#

7 from E1 e1 select e1 where e1.relation1,

8

9 WARNING

10 #@ Cardinality of relation relation1 as changed to 0..* @#

11 from E1 e1 select e1 where e1.relation1.Attr2 == "dummy",

12

13 WARNING

14 \#@ Cardinality of relation relation1 as changed to 0..* @\#

15 delete E1 e where e.relation1 == "5"

Page 14 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

4 Example Query Migration Scenario

In this section, we further illustrate the use of the query migration tool by considering a schema evolution
scenario involving a chain of schema modification operators. Let us assume the source and target TyphonML
schemas depicted respectively on the left and on the right of Figure 2.

Let us now consider the following input TyphonQL queries expressed on top of the source TyphonML schema:

1 from User u, CreditCard c select c where u.paymentsDetails == c, u.name == "Doe",

2

3 insert User {id:5, name:"John", surname:"Doe"},

4

5 from Review r, Product p select r where p.review == r, p.id == "145",

6

7 from Order o select o where o.date > 1998,

8

9 update Order o where o.totalAmount > 99999 set {},

10

11 delete Comment c where c.id == "122"

The query migration tool, applied to this set of queries under this schema evolution scenario would produce
the following annotated output queries:

1 WARNING

2 #@ Query return a different QuerySet : User contains attributes from User and CreditCard @#

3 from User u select u where u.name == "Doe" ,

4

5 BROKEN

6 #@ User and CreditCard merged @#

7 insert User {id:5, name:"John", surname:"Doe"},

8

9 WARNING

10 #@ Attribute rating added to Review. Result of the query may have changed @#

11 from Review r, Product p select r where p.review == r, p.id == "145",

12

13 BROKEN

14 #@ Attribute Order.date removed @#

15 from Order o select o where o.date > 1998,

16

17 WARNING

18 #@ Query result might differ : Attribute Order.date removed @#

19 #@ The type of the attribute totalAmount from Order changed @#

20 update Order o where o.totalAmount > 99999 set {},

21

22 UNCHANGED

23 delete Comment c where c.id == "122"

We see that some of the output queries are annotated with several warnings, due to the successive application
of several transformation rules.

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 15

D6.4 Hybrid Polystore Query Evolution Tools

1 entity Review {

2 id : String

3 product -> Product[1]

4 }

5 entity Product {

6 id : String

7 name : String

8 description : String

9 photo : Blob

10 review :-> Review[0..*]

11 orders -> Product[0..*]

12 }

13 entity Order {

14 id : String

15 date : Date

16 totalAmount : int

17

18 products -> Product.products[0..*]

19 users -> User[1]

20 paidWith -> CreditCard[1]

21 }

22 entity User {

23 id : String

24 name : String

25 surname : String

26 comments :-> Comment[0..*]

27 paymentsDetails :-> CreditCard[0..*]

28 orders -> Order[0..*]

29 }

30 entity Comment {

31 id : String

32 responses :-> Comment[0..*]

33 }

34 entity CreditCard {

35 id : String

36 number : String

37 expiryDate : Date

38 }

39

40 relationaldb RelationalDatabase {

41 tables {

42 table {

43 Order : Order

44 index orderIndex {

45 attributes ("Order.date")

46 }

47 idSpec ("Order.date")

48 }

49 table {

50 User : User

51 index userIndex {

52 attributes (’User.name’)

53 }

54 idSpec (’User.name’)

55 }

56 table {

57 CreditCard : CreditCard

58 idSpec ("CreditCard.number")

59 }

60 }

61 }

62 changeOperators [

63 add attribute rating : int to Review,

64 add relation responses to Review -> Comment[0..*],

65 merge entities User CreditCard as User,

66 remove attribute "Order.date",

67 change attribute "Order.totalAmount" type Real

68]

1 entity Review {

2 id : String

3 rating: int

4 product -> Product[1]

5 responses -> Comment[0..*]

6 }

7 entity Product {

8 id : String

9 name : String

10 description : String

11 photo : Blob

12 review :-> Review[0..*]

13 orders -> Product[0..*]

14 }

15 entity Order {

16 id : String

17 totalAmount : Real

18

19 products -> Product.products[0..*]

20 users -> User[1]

21 paidWith -> User[1]

22 }

23 entity User {

24 id : String

25 name : String

26 surname : String

27 number : String

28 expiryDate : Date

29

30 comments :-> Comment[0..*]

31 orders -> Order[0..*]

32 }

33 entity Comment {

34 id : String

35 responses :-> Comment[0..*]

36 }

37

38 relationaldb RelationalDatabase {

39 tables {

40 table {

41 Order : Order

42 index orderIndex {

43 attributes ("Order.date")

44 }

45 idSpec ("Order.date")

46 }

47 table {

48 User : User

49 index userIndex {

50 attributes (’User.name’)

51 }

52 idSpec (’User.name’)

53 }

54 table {

55 CreditCard : CreditCard

56 idSpec ("CreditCard.number")

57 }

58 }

59 }

Figure 2: Source (left) and target (right) TyphonML schemas.

Page 16 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

5 Implementation

In this section, we elaborate on some implementation details of our Query Migration Tool. We first present
the main architecture of the tool (Section 5.1). Then, we describe the way to use this tool through a brief user
guide (Section 5.2).

5.1 Tool Description

The main architecture of the query migration tool is built on Rascal language which is a domain-specific
language for metaprogramming that is used to solve problems in the domain of source code analysis and
transformation [3]. Rascal is also used in Work Package 4 to implement the TyphonQL language compilers.
We could therefore benefit from existing grammars of (1) the TyphonQL language and (2) the TyphonML XMI
format.

The query migration tool is released as an eclipse plugin. Using this plugin, the user can create an input file
(called evolution script) that includes:

• a link to the source TyphonML schema;
• the schema modification operator(s) applied to this source schema;
• all the TyphonQL queries, expressed on top of the source schema, that should be transformed according

to thoses SMO(s).

The query migration tool iterates on the list of schema modification operators and, for each of them, succes-
sively transform and/or annotate the TyphonQL queries given as input.

5.2 User Guide

This section provides a brief, illustrated user guide of the query migration tool allowing user to migrate existing
TyphonQL queries to an evolving TyphonML schema.

Everything starts from the structure view of the Eclipse project, as shown in Figure 3.

Figure 3: View of the Eclipse project structure

The file schema.xmi contains the source TyphonML schema as well as the change operators that are generated
from the TyphonML editor. In order to migrate related TyphonQL queries accordingly, a new query evolution

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 17

D6.4 Hybrid Polystore Query Evolution Tools

Figure 4: Creation of a new .qevo file

script file should be created. This is done as shown in Figure 4. The file extension of a query evolution script
is .qevo.

Initially, the created evolution script consists of an empty file. Then it should be filled, as presented in Figure 5.
Basically, the script is made of three parts :

• Import: the path to the XMI file corresponding to the source TyphonML schema;
• Change operators: the (set of) change operator(s) applied to the source TyphonML schema. These

operators can simply be copy-pasted from the .tml form of the source TyphonML schema1;
• Queries: the set of input TyphonQL queries, separated by a comma.

Figure 5: Example query evolution script.

Once the script is fully written, the query migration process can be triggered through a simple right click on
the evolution script. A menu appears, one can then select TyphonEvolution -> evolve, as shown in Figure 6.

The queries written by the user in the evolution script are then automatically updated and annotated in the same
.qevo file (Figure 7). In this example, we can see all the possible output cases of a query migration:

1Note that once the query migration will be integrated in the polystore platform, the change operators will be auto-
matically extracted from the .xmi file and will not be required from the user anymore.

Page 18 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

Figure 6: Running the query migration tool.

• The first output query (lines 7-9) is set as broken since it inserts data in an entity E1, which has been
merged with an another entity into a new entity EMerged. Therefore the user is warned that the query
should be modified manually.

• The second query (lines 11-13) is annotated with a warning. Indeed, the user is requesting data from
entity E1. Since the latter was merged with entity E2, the user is informed about the impact of this
change on the result set of the query. Indeed, the new query result now returns information from E1 and
E2.

• The third query (lines 15-17) was successfully transformed into an equivalent query. The behavior of
the output query is the same as the input query.

• The fourth query (lines 19-20): can remain unchanged, since it is not impacted the merge operation.

The output annotations help the user to identify which queries became invalid and provide useful information
in order to further adapt the code querying the polystore to the target TyphonML schema.

Figure 7: Output queries.

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 19

D6.4 Hybrid Polystore Query Evolution Tools

6 Conclusions

In this deliverable, we have presented a tool-supported method for TyphonQL query migration under polystore
schema evolution. This method and tool support the automated adaptation of existing TyphonQL queries
to an evolving TyphonML schema. More specifically, we have described the way the TyphonQL queries
are transformed in accordance to schema modification operators applied to a source TyphonML schema, in
order (1) to produce (almost) equivalent output queries expressed on top of the target TyphonML model or
(2) to identify the queries that became invalid and could not be migrated. Four categories of output queries
are returned by the query migration tool : (i) Unchanged queries, that remain valid; (ii) Modified queries,
that have been transformed and are equivalent; (iii) Modified with warning(q), that are valid queries but may
expose a different behavior; or (iv) Broken queries, that became invalid and cannot be migrated towards the
target schema.

The next steps in WP6 include, among others: (1) to pursue the continuous integration of the WP6 tools with
the other TYPHON components, namely the TyphonML tools (WP2) and the TyphonQL engines (WP4); (2)
the development of recommendation techniques and tools that would automatically suggest polystore recon-
figurations to the user based on the monitoring of the polystore; (3) systematic testing and evaluation of the
WP6 components in collaboration with the use case partners, and (4) the dissemination of our research and
development results to a wide audience.

Page 20 Version 1.0
Confidentiality: Public Distribution

20 December 2019

D6.4 Hybrid Polystore Query Evolution Tools

References
[1] Centrum Wiskunde & Informatica (CWI). D4.2 – Hybrid Polystore Query Language (TyphonQL), 2018.

[2] Centrum Wiskunde & Informatica (CWI). D4.3 – TyphonQL Compilers and Interpeters (Initial Version),
2018.

[3] P. Klint, T. van der Storm, and J.J. Vinju. RASCAL: A domain specific language for source code analysis
and manipulation. In In Proceedings of the 9th International Working Conference on Source Code Analysis
and Manipulation (SCAM’09), pages 168–177. IEEE Computer Society, 2009.

[4] The University of L’Aquila. D2.3 – Hybrid Polystore Modelling Language (Final Version), 2018.

[5] The University of L’Aquila. D2.4 – TyphonML Modelling Tools, 2019.

[6] University of Namur. D6.2 – Hybrid Polystore Schema Evolution Methodology and Tools, 2018.

20 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 21

	Introduction
	Purpose of the deliverable
	Relationship to other TYPHON deliverables
	Contributors
	Structure of the deliverable

	Context
	Query Migration
	Query Migration Process
	Query Migration Rules
	SMOs on Entity
	SMOs on Attribute
	SMOs on Relationship

	Example Query Migration Scenario
	Implementation
	Tool Description
	User Guide

	Conclusions

